

Center for Compressible Multiphase Turbulence

Overview

1. Background

The University of Florida (UF) established a Center for Compressible Multiphase Turbulence (CCMT) on January 26, 2014 as part of the NNSA's Predictive Science Academic Alliance Program II (PSAAP-II) Single-Discipline Centers (SDC). The intellectual objectives of the Center are threefold: to radically advance the field of compressible multiphase turbulence (CMT) through rigorous first-principle multiscale modeling, to advance very large-scale predictive simulation science on present and near-future platforms, and to advance a co-design strategy that combines exascale emulation with a novel energy-constrained numerical approach. The Center is performing petascale, and working towards exascale, simulations of instabilities, turbulence and mixing in particulate-laden flows under conditions of extreme pressure and temperature to investigate fundamental problems of interest to national technological leadership. Towards this vision we are tackling the following challenges:

Goals of CCMT

- *To radically advance the field of CMT*
- *To advance predictive simulation science on current and near-future computing platforms with uncertainty budget as backbone*
- *To advance a co-design strategy that combines exascale emulation, exascale algorithms, exascale CS*
- *To educate students and postdocs in exascale simulation science and place them at NNSA laboratories*

1) Target an important application that can only be enabled by exascale computing: We are solving a complex multiscale problem at an unprecedented level of physical detail and integration and thereby advance predictive simulation science. CMT poses a grand challenge to our understanding as it combines three complex physics: compressibility, multiphase flow and turbulence. CMT occurs often under extreme conditions of pressure and temperature, and as a result is not easily amenable to high-fidelity experiments and diagnostics. CMT presents a fascinating array of poorly-understood instability, transition, and turbulent processes manifest over a wide range of strongly interacting length and time scales. Current computational approaches involve models and closures that are developed from incomplete understanding, and as a result are largely empirical. Fully validated exascale simulation perhaps is the only path to fundamental breakthroughs that can lead us out of current empiricism.

2) Well-defined problem hierarchy leading to a demonstration problem: A multiscale approach from the microscale to the mesoscale and to the macroscale is being pursued for a systematic integrated investigation of the CMT physics. We have adopted a problem hierarchy that culminates at a signature demonstration problem of explosive dispersal of particles from a well-characterized initial condition, which fully exercises all the key complex processes of CMT. We pursue a

coupling strategy where (i) fully resolved microscale simulations will lead to reduced order descriptions (interphase coupling models) to be employed at the mesoscale and (ii) partially resolved mesoscale simulations will lead to reduced order descriptions (multiphase large eddy simulation closures) to be employed at the macroscale. This will allow computational efficiency and high degree of parallelism at all levels of the hierarchy.

- 3) Simulation and experiment roadmaps for rigorous validation: We focus on integrated system-scale simulations of the demonstration problem from the outset using existing integrated code capabilities. Simultaneously, we also perform petascale simulations at the micro and mesoscales. Improvements to micro-to-meso and meso-to-macro coupling models will be systematically and periodically incorporated at the appropriate higher level. A layered systems engineering approach is used to organize and integrate physical subsystems with numerical, software and service components, to achieve progressively improved operational capability for system-scale simulations. We have developed a detailed simulation and experiment roadmap which allow rigorous step-by-step validation at each step of the problem hierarchy.
- 4) Develop novel uncertainty quantification (UQ) approaches for CMT: Detailed measurements from carefully chosen existing and planned experiments at the Air Force Research Laboratory Munitions Directorate (AFRL-RW), Sandia Multiphase Shock Tube facility and Los Alamos Center of Mixing under Extreme Conditions (CoMuEX) are used for rigorous quantification of uncertainties from the micro/mesoscales to the macroscale. We are engaged in vigorous uncertainty reduction through better characterization and instrumentation, rigorous calibration of the models, and improved numerical resolution. Simultaneous simulations and experiments at the micro, meso and macroscales of the problem hierarchy will allow us to both propagate up uncertainty to higher scales, and to reduce uncertainty through iterative improvements at the lower scales. A particularly difficult aspect of CMT is that it is characterized by extreme events that are localized in space and time. A key innovation is the development of novel techniques for accurate characterization of probability tails in the uncertainty quantification of such rare but critical events.
- 5) Demonstrate integrated performance on current/near-future architectures: Modern many-core architectures (such as Intel MIC), that provide high raw gigaflops, have deep memory hierarchies and low overhead threading capabilities. We exploit these capabilities to optimally utilize both computational and energy resources. In particular, we will tackle load balance and performance challenges in terms of data and work decomposition for the CMT code framework. Different parallelization schemes will be considered for effectively implementing simulations at the microscale, mesoscale, and system-scale, especially for heterogeneous resources.
- 6) Develop methods for predicting performance on a variety of exascale architectures: While many exascale trends seem clear, there are far too many permutations in the design space to select one a priori. We leverage the unique Novo-G facility at the NSF-supported UF Center for High-Performance Reconfigurable Computing (CHREC) to emulate and evaluate a series of candidate exascale architectures. We are developing an unprecedented capability to behaviorally prototype

in software and hardware a variety of promising (as defined by leading exascale initiatives) forms of next-generation exascale (i) device and node designs at the micro-level and (ii) communication and system architectures at the macro-level. We are conducting experiments with CMT-bone kernels, miniapps and skeleton-apps to evaluate promising architectures in terms of performance, energy, temperature, reliability, and scalability. Modeling, simulation, and estimation tools (e.g., those supported within the Sandia's Structural Simulation Toolkit (SST)) are being leveraged with our behavioral simulations and emulations.

7) Solutions for energy efficiency and thermal management: We are developing a framework for multi-element and multi-objective optimization that will simultaneously minimize energy and maximize performance. We exploit the data and task parallelisms within CMT application and its UQ implementation to develop innovative low complexity static and dynamic algorithms for scheduling, while considering important factors such as thermal constraints and leakage currents.

2. Demonstration Problem

We aim at solving a problem of Compressible Multiphase Turbulence (CMT) at an unprecedented level of physical detail and thereby advance predictive simulation science. The overarching demonstration problem consists of a cylindrical core of simple explosive pellet of about 10 grams will be surrounded by a cylindrical very-thin-walled glass jacket of larger diameter. The annular region between the pellet and the jacket will be filled with mono or polydisperse metal powder of spherical shape. The shape and amount of the explosive charge and the size distribution of the metal powder and its material (aluminum, steel, tungsten, etc.) are parameters that will be varied. The charge will be hung from a test fixture so that the effect of the ground and the surrounding structures will be eliminated during the initial phase of explosion and dispersion. The orientation of the test setup will be such that the resulting explosive dispersal of particles and the gas field can be highly accurately measured. The following features makes this problem a very good choice for

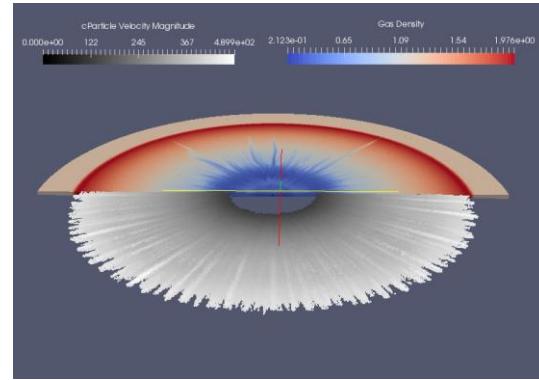
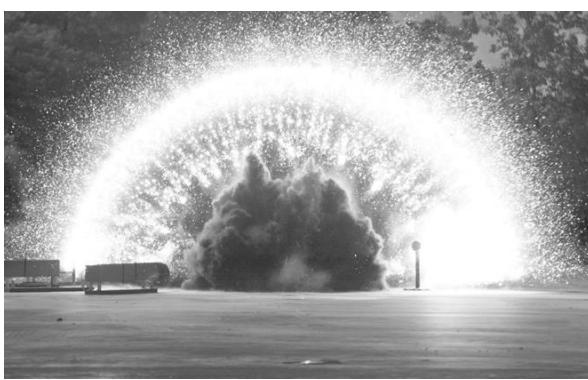
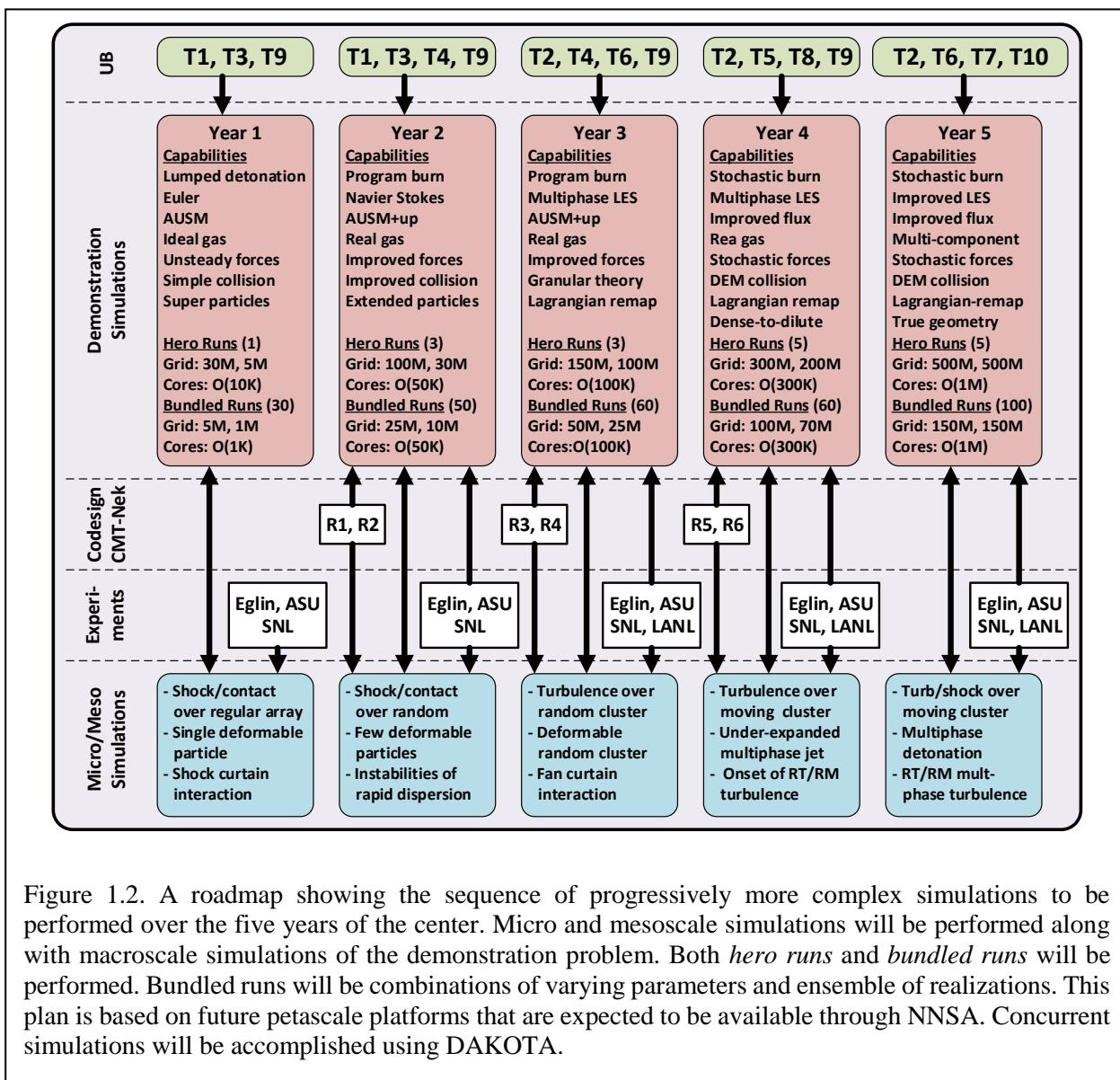




Figure 1.1. Left: Schematic of the three-dimensional computational domain for the explosive dispersal of particles simulations. Not drawn to scale. Right: Current three-dimensional hero run: 30 million computational cells, 5 million computational particles, computational domain extended to about 4m in radius. Time shown, $t=1.46\text{ms}$.

demonstration: (i) the explosive dispersal exercises all the major CMT physics, (ii) the extreme conditions makes this a demanding test for predictive capability, (iii) this problem requires exascale for true predictive capability, and (iv) we have already performed similar experiments and validation-quality measurements. The explosive dispersal of solid particles problem displayed in Figure 1.1 and described by Frost *et al.* (Phys. Fluids, 24(9), 2012) was chosen for the initial phase of our research activities.

3. Simulation Roadmap

The center is focused on integrated system-scale simulations of the demonstration problem from the outset using existing integrated-code capabilities. Figure 1.2 shows the roadmap of the proposed sequence of simulations. The following important considerations was used in

constructing the roadmap: (i) Along with system-level simulations of the demonstration problem, we will perform increasingly more complex simulations at the micro and mesoscales. Based on these simulations, improvements will be made to micro-to-meso and meso-to-macro coupling models. (ii) To take maximum advantage of validation experiments, large numbers of simulations will be required for optimal calibration. We are using surrogate models to allow us to solve the multi-level optimization problem associated with selecting the physical constants that give the best match with the numerical model. (iii) Variations of the key control parameters (particle size, particle material, shock strength, etc.) will be guided by simulations that identify which combinations of parameters will elicit different modes of instability. (iv) Statistical variability will be explored through an ensemble of realizations under nominally identical conditions. (v) Simulations are currently being carried out concurrently as *bundled runs* using the DAKOTA toolkit. (vi) We anticipate increasingly larger petascale computational platforms to be available at the NNSA labs. (vii) We have and will continue to perform selective *hero runs* at super-high resolution to help quantify discretization errors to help assess the accuracy of the estimated uncertainties. (viii) UQ is being used to guide the selections of quantities to be measured with preference to those with low uncertainty, so as to avoid empty validation based on large error bars.

The Year-1 simulations of the demonstration problem employ simplified physics model: (i) a lumped detonation model, (ii) the single-phase AUSM+ flux scheme for the Euler gas equations with ideal gas equations of state, (iii) the actual particles are approximated with computational super particles, (iv) gas-particle coupling is through point-particle models of quasi-steady and unsteady forces and heat transfer, and (v) particle-particle collisions are accounted using a simplified collision model. The corresponding hero and bundled runs represent our Year-1 starting point. The above roadmap shown in Figure 1.2 lays out year-by-year progression of more detailed simulations that incorporate additional physics through new and improved models. Furthermore, each year we plan to perform larger and larger hero runs as well as large array of bundled macroscale simulations for uncertainty quantification.

The simulation roadmap is driven from the top by Uncertainty Budget (UB). A detailed phenomenon identification and ranking analysis of the demonstration problem has identified 11 key sources of errors and uncertainties which are briefly listed below:

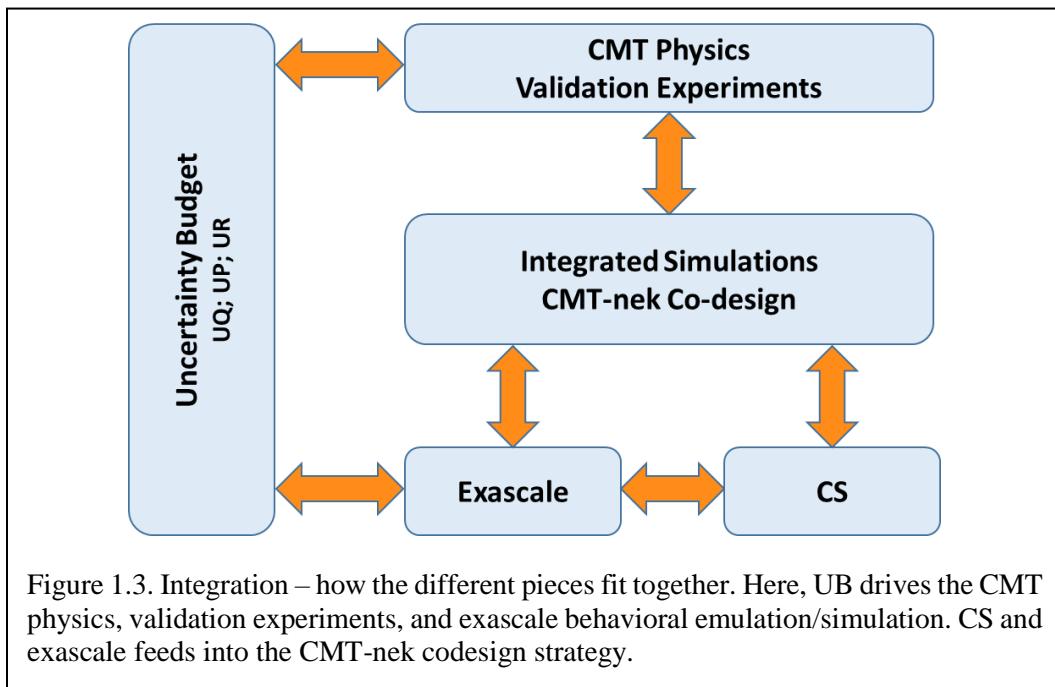
- T1: detonation process modeling
- T2: Multiphase turbulence modeling
- T3: Real gas thermodynamic and transport properties
- T4: Inter-particle collision modeling
- T5: Particle compaction modeling (during early stages of detonation/shock propagation)
- T6: Point particle modeling of gas-particle momentum (force) exchange
- T7: Point particle modeling of gas-particle thermal (heat-transfer) exchange
- T8: Particle deformation, sintering and break-up physics
- T9: Discretization (numerical) errors

- T10: Errors from geometric approximation (geometric differences in the details of experiments and simulations)
- T11: Experimental uncertainties and measurement errors

The key activity of UB effort will be to quantify the uncertainty in the zeroth and first order prediction metrics. The zeroth order prediction metrics of the demonstration problem are:

- The blast wave location as a function of time
- The average particle front and tail locations as a function of time
- The number of large-scale instabilities of the particulate front

The first order prediction metrics go beyond the zeroth order metrics and the details of the demonstration will be quantified with the following first order metrics:

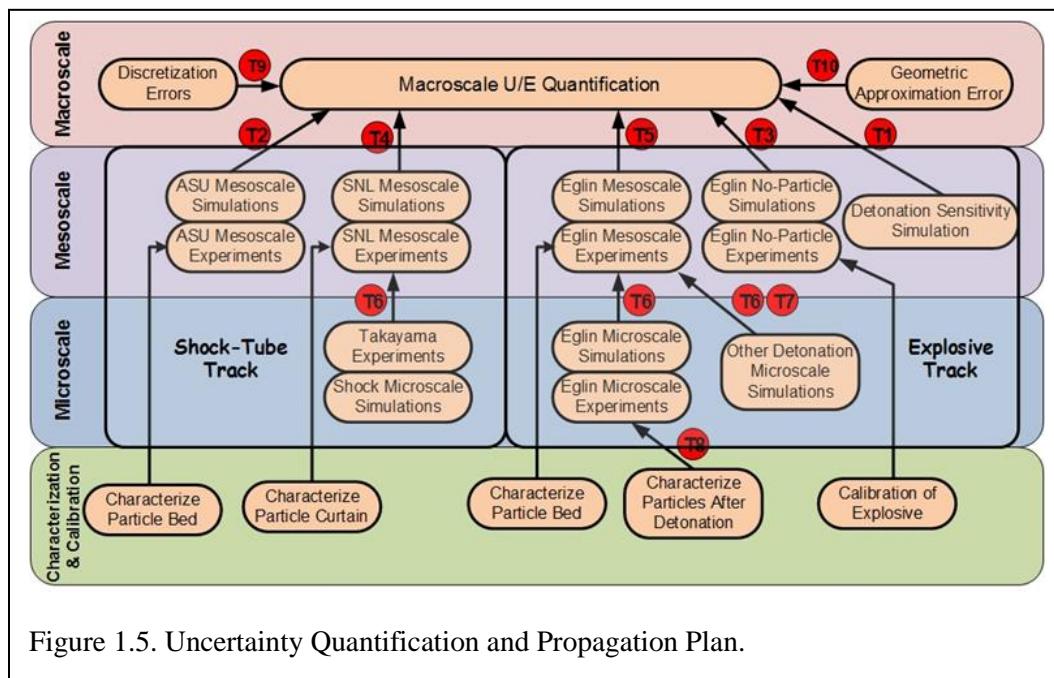

- Time evolution of the pressure at selected points within 5% error
- Time evolution of the thermal load at selected points within 20% error
- Time evolution of average particle concentration within 15% error
- Evolution of particle front thickness due to instability and turbulent mixing within 10% error
- RMS turbulent velocity and pressure fluctuations at the particle front within 15% error,
- Time evolution of local particle size distribution within 15% error
- Multiphase turbulent spectra and correlation length scales within 20% error.

An important component of the yearly UB effort is to quantify contribution from the above 11 sources of errors and uncertainties to each of the prediction metrics. This quantification will allow us to focus on error/uncertainty reduction. Thus each year we will focus on uncertainty reduction and quantification through certain modeling and simulation activities. These are the UB drivers for the proposed roadmap and they are presented at the top row of Figure 1.2.

Figure 1.2 also presents the yearly releases of CMT-nek, the new code being co-designed through an integration of exascale higher-order algorithm with exascale emulation/ simulation. Also indicated are yearly coordination with the micro, meso and macroscale experiments to be performed at Eglin Air Force Base, Arizona State University (ASU), Sandia National Laboratory (SNL) multiphase shock tube facility and Los Alamos National Laboratory (LANL) Center of Mixing Under Extreme Conditions. The macroscale simulation road map will also be supported by the yearly progression of mico and mesoscale simulations, which is also indicated in Figure 1.2.

4. Integration

The Center recognizes the critical importance of tight integration for the success of the center. The center will be organized in terms of tasks and cross-cutting teams, rather than in terms of faculty and their research groups. The physics-based tasks are continuous and particulates phase modeling and simulation. In addition we have exascale (EX), computer sciences (CS) and uncertainty quantification (UQ) as the cross-cutting tasks that will interface and integrate the physics-based tasks. By ensuring faculty, research scientists, and postdocs contribute to multiple physics and/or



Hour time slots	Exascale	CMT-nek	CS	Micro	Macro	UQ	Exp
Exascale	X	X	X				X
CMT-nek	X	X	X	X	X		
CS	X	X	X				
Micro		X		X	X	X	
Macro		X		X	X	X	X
UQ	X			X	X	X	X

Figure 1.4. Management – tasks and teams. Teams include students, staff, and faculty. The Center is organized by physics-based tasks and cross-cutting teams, rather than by faculty and their research groups. All staff and large number of graduate students located on 2nd floor of PERC. All meetings held in PERC. Weekly interactions (black); Regular interactions (red).

cross-cutting tasks, we will achieve tight integration. This matrix organization, depicted in Figures 1.3 and 1.4, tears down discipline and departmental boundaries and allows close interaction. In addition, significant effort has gone into integrating the various disciplines.

The intellectual integration of the different simulation and experimental talks, across the three different scales (micro, meso and macro) is shown in Figure 1.5. Uncertainty quantification,

propagation and reduction along the ten sources of errors/uncertainties (T1 to T10) forms the framework that connects and drives the different simulation and experimental activities of the center. The hierarchical flow of error/uncertainty information to the macroscale is shown.

At the *microscale* the motion and thermal evolution of particles depends on the flow around them. In return, the particles modify the local flow by the formation of momentum and thermal wakes. Particle structures (chains and clusters) spontaneously form due to wake-wake, particle-wake and particle-particle interactions. At the *mesoscale*, due to inertial interaction with turbulence, particles preferentially accumulate. Also, flow instabilities can lead to large-scale structures in particle distribution. These nonuniformities have profound influence on their collective back influence on the flow. At the *macroscale* (or *system-scale*) the geometric details of the setup influence the coupling between the particles and expanding gas. Important aspects of the multiscale coupling strategy we are pursuing includes: (i) microscale-informed reduced-order descriptions (point-particle coupling models) to be employed at the mesoscale and (ii) mesoscale-informed reduced-order descriptions (multiphase LES models) to be employed at the macroscale. With this strategy, the predictive capability at the system-scale can be thoroughly validated and uncertainty rigorously quantified as illustrated in Figure 1.5.

Note that the multiscale coupling strategy and the overall uncertainty quantification plan includes both a shock-tube track and an explosive track. We have been working with the Experimental Teams at the various locations and have discussed in detail the type of characterization, inputs, and output from the experiments for a meaningful UB approach.

Finally, Figure 1.6 shows the timeline for performing the different tasks. These tasks T1-T11 were previously described.

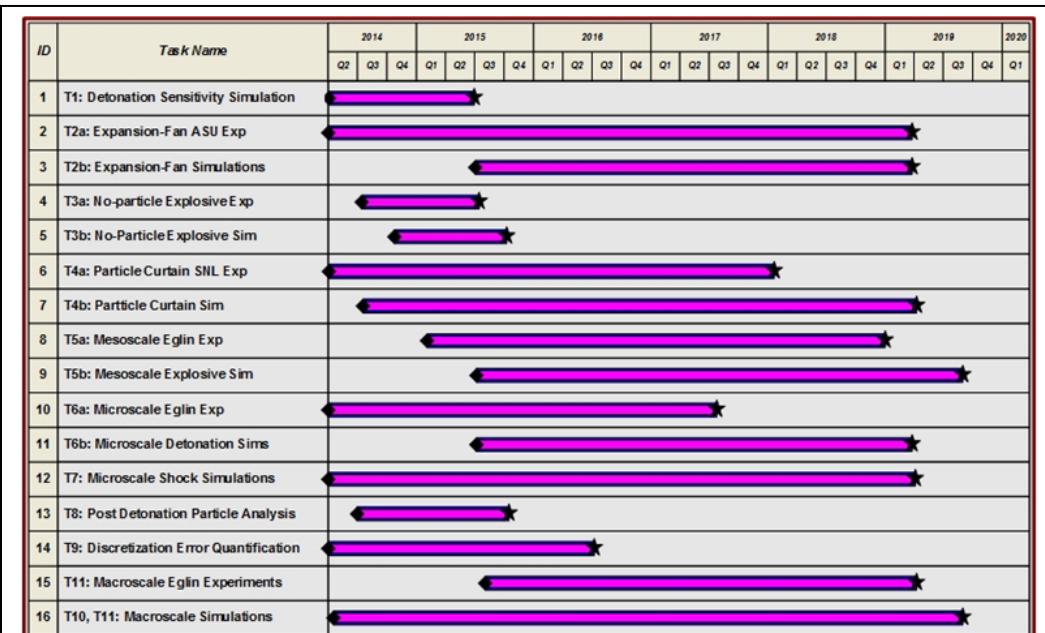


Figure 1.6. Uncertainty Quantification Task Timeline.