

Overview of Management Structure and Methods in CHREC

Alan D. George, Ph.D., FIEEE Founder & Director, NSF CHREC Center Professor of ECE, University of Florida

Research highlighted in this presentation was supported by CHREC members and by the I/UCRC Centers Program of the National Science Foundation under Grant Nos. EEC-0642422 and IIP-1161022.

National Science Foundation's

Industry/University Cooperative Research (I/UCRC) Program

Outline

- General structure
- Research mission and model
- University sites

- Industry and government partners
- Internal structure and interactions
- External structure and interactions
- Research impact
- General conclusions

What is CHREC?

- NSF Center for High-Performance Reconfigurable Computing
 - Unique US national research center, operational since January 2007

Note: a 5th university

- Leading ECE/CS research groups @ four major universities
 - **University of Florida** (lead)
 - **Brigham Young University**
 - Virginia Tech
 - **George Washington University**
- Under auspices of I/UCRC Program at NSF
 - Industry/University Cooperative Research Center
 - CHREC is supported by CISE Directorate @ NSF
 - CHREC is both National Research Center and Consortium
 - University groups serve as research base (faculty, students, staff)
 - Industry & government organizations are research partners, sponsors, collaborators, advisory board, & technology-transfer recipients
 - Cited by NSF as one of its top national R&D centers

econfigurable Computing

CHREC Faculty (16)

- University of Florida (lead)
 - Dr. Alan D. George, Professor of ECE Founder & Director
 - Dr. Herman Lam, Associate Professor of ECE Associate Director
 - Dr. Ann Gordon-Ross, Associate Professor of ECE
 - Dr. Greg Stitt, Associate Professor of ECE
 - Dr. Jose Principe, Professor of ECE
 - Dr. Janise McNair, Associate Professor of ECE
 - Dr. Tuba Yavuz, Assistant Professor of ECE
- Brigham Young University
 - Dr. Michael J. Wirthlin, Professor of ECE Co-Director
 - Dr. Brent E. Nelson, Professor of ECE
 - Dr. Brad L. Hutchings, Professor of ECE
 - Dr. Doran Wilde, Associate Professor of ECE
- Virginia Tech

econfigurable Computing

- Dr. Peter Athanas, Professor of ECE Co-Director
- Dr. Wu-Chun Feng, Professor of CS and ECE
- Dr. Krzysztof Kepa, Postdoctoral Research Associate in ECE
- George Washington University
 - Dr. Tarek El-Ghazawi, Professor of ECE Co-Director
 - Dr. Vikram Narayana, Assistant Research Professor

Most importantly, CHREC features an exceptional team of ~70 students spanning our four university sites

- AFRL Munitions Directorate
- 2. AFRL Sensors Directorate
- 3. AFRL Space Vehicles Directorate
- 4. Altera
- AMD
- 6. Arctic Region Supercomputing Center
- 7. BAE Systems
- 8. Convey Computer
- 9. Draper Laboratory
- 10. GiDEL
- 11. Harris
- 12. Honeywell
- 13. IBM
- 14. L-3 Cincinnati Electronics
- 15. Lockheed Martin Space Systems Co.
- 16. Los Alamos National Laboratory
- 17. MIT Lincoln Laboratory
- **18. NASA Ames Research Center**
- **19. NASA Goddard Space Flight Center**
- 20. NASA Johnson Space Center
- 21. NASA Kennedy Space Center
- 22. NASA Langley Research Center
- 23. National Instruments
- 24. National Reconnaissance Office
- 25. National Security Agency
- 26. Office of Naval Research
- 27. Sandia National Laboratories
- 28. Securboration
- 29. Space Micro
- 30. Texas Instruments
- 31. Xilinx

NSF Model for I/UCRC Centers

Research Interaction

Internal Structure and Interactions

- Multi-university center structure
 - Federation (union of partially self-governing sites)
 - Each school responsible for its members, projects, students, etc.
- Research structure
 - Hierarchical mentoring (faculty, PhD, MS, BS)
 - Project groups, each with multiple projects
 - 6 groups at UF in 2014, each with 3 projects on average
 - Each group led by 1 faculty and 1 or 2 doctoral students
- Internal interactions (at UF)
 - Twice-weekly group meetings (one w/ faculty, one w/o)
 - Weekly All-Hands meetings (groups take turns to present)
 - Variety of informal meetings as needed each week
 - Student rooms (5) organized to keep collaborators close

External Structure and Interactions

- Formal semiannual research workshops
 - June (midyear, 1.5 days) and December (annual, 2 days)
 - All members, students, and faculty assembled
 - Presentations, posters, & video on secure web site
- Progress reports
 - One-pager per group distributed monthly
 - Additional info distributed as needed by project
- Recurring and ad-hoc telecons by project
 - Some involve one site and member, others multiple
 - Some are regularly scheduled, and others on as-needed basis
- Student, faculty, and member travel
 - Center-arranged custom internships for students (many)
 - Meetings at member and school sites and conferences

Research Impact

- Foremost advantage of I/UCRC structure
 - 1) Attract industry and government leaders in your field
 - 2) Work closely with them to define research agenda
 - 3) Achieve success on that research agenda
 - 4) Members adopt your ideas, methods, technologies
 - 5) Thus, university research reaps major impact
- Example: CHREC Space Processor
 - Explored new research concepts and methods (2011-12)
 - Developed, evaluated, and optimized prototype (2013)
 - Adopted by NASA for future missions, and member as product (2014)
- Other advantages of this management structure
 - Critical mass \rightarrow less stress on students and faculty
 - Flexible and stable source of research funding for worthy projects
 - □ Scalable approach → supports growth in all aspects

Fault-Tolerant Computing

General Conclusions

- CHREC features I/UCRC structure c/o NSF
 - Beneficial for scalable research management
 - As we grow in members, sites, projects, students, and faculty
 - Beneficial for critical mass in research
 - Key players (industry, academia, government) and stable funding
 - Beneficial for research impact and IP
 - Agencies and companies adopting ideas, methods, technologies
- Strong support staff is vital
 - Center coordinator; System/network/security administrator
- Internal structure and interactions
 - To keep students and faculty productive (and happy)
- External structure and interactions
 - So members reap maximum ROI and return for more

