

DesignSafe Cyberinfrastructure for **Natural Hazards Research**

Ellen M. Rathje, PhD, PE, F.ASCE

Janet S. Cockrell Chair in Engineering Dept. of Civil, Arch., and Env. Engineering University of Texas at Austin

What is DesignSafe?

 A web-based research platform to enable transformative research that protects human life and reduces damage during natural hazard events

DesignSafe Vision

- A cyberinfrastructure (CI) that is an integral part of research discovery
 - Provide a platform for data sharing/publishing
 - Enable research workflows and access to high performance computing (HPC)
 - Deliver cloud-based tools that support the analysis, visualization, and integration of diverse data types
- Amplify and link the capabilities of natural hazards researchers in the US and abroad

DesignSafe Management Team

PI / Director Ellen Rathje Univ. of Texas

Co-PI Scott Brandenberg UCLA

Co-PI Clint Dawson Univ. of Texas

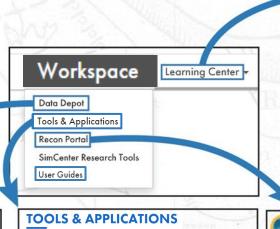
Co-PI Jean-Paul Pinelli Florida Inst. Tech.

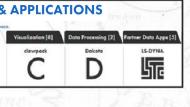
Co-PI Jamie Padgett Rice Univ.

CI Dan Stanzione TACC/UT

Deputy Director Tim Cockerill TACC/UT

Portal Manager Tracy Brown, TACC/UT **Project Manager** Natalie Henriques, TACC/UT





www.designsafe-ci.org

Simulation [7]

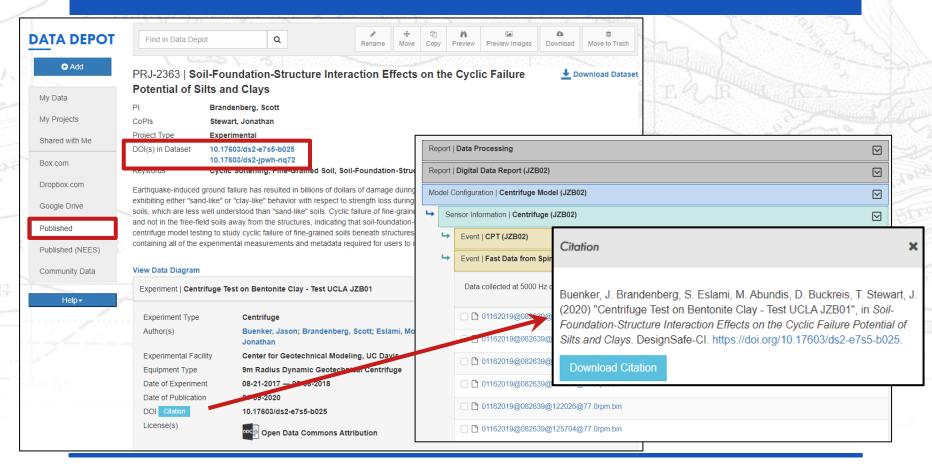
ADCIRC

ADCIRC

Data Depot

Find in My Projects	Q	Rename	⊕ Move	원 Copy	Preview	Preview Images	Download	Move to Trash

Project ID	Project Title	Project PI	Last Modified	
PRJ-2752	CEC Project geohazards group	Paolo Zimmaro	9/15/20 2:31 AM	
PRJ-2889	Earthquake Time Series from Events in Texas, Oklahoma, and Kansas	Ellen Rathje	9/11/20 2:02 PM	
PRJ-2662	Displacement and subsurface characteristics of select lateral spread locations from the 2011 Christchurch, New Zealand earthquake	Ellen Rathje	9/1/20 9:52 AM	
PRJ-1822	Hybrid Simulation Test Project	Keith Strmiska	8/24/20 5:01 PM	
PRJ-2859	NEES, The George E. Brown, Jr. Network for Earthquake Engineering Simulation, 2004-2014 A DECADE OF EARTHQUAKE ENGINEERING RESEARCH	Julio Ramirez	8/14/20 12:13 PN	
PRJ-2157	Simulations of Seismic Displacement of a Clay Slope using LS-Dyna	Ellen Rathje	8/11/20 2:24 PM	
PRJ-2331	RAPID Data for DesignSafe Site Visit	Jeffrey Berman	8/3/20 3:54 PM	
PRJ-1716	Bidirectional Testing of Drywall Partition Walls with Novel Details, Integrated into a Rocking Wall Subassembly	Keri Ryan	7/29/20 11:26 PM	
PRJ-2824	Numerical modeling of lateral spread displacements at free-face sites using	Michael Little	7/13/20 4:48 PM	


Help ▼

Make ★your★ data count!

Make your research re-producible and your data re-usable

- Formally publish data sets in stable data repositories
 - DesignSafe, Zenodo, Dataverse, figshare, Dryad, others
- Data needs a permanent, digital location (DOI) not just a URL
 - List curated data sets on your CV, just like papers
- Cite data publication in your reference list of your paper using DOI, citation language

provided here. Additionally, the probabilistic approaches described in this paper are implemented as executable Jupyter notebooks (Saygili 2018a, b). These notebooks can be accessed in the Data

References

Saygili, G., Rathje, E., and Wang, Y. (2018a). "Probabilistic seismic hazard analysis for the sliding displacement of rigid sliding masses [Data set]." Designsafe-CI (https://doi.org/10.17603/ds22d6k)

Data Reuse Examples

Journal of Wind Engineering and Industrial

Aerodynamics

Volume 196, January 2020, 104026

Low-rise gable roof buildings pressure prediction using deep neural networks

Jiangiao Tian a, Kurtis R. Gurley c, Maximillian T. Diaz a, Pedro L. Fernández-Cabán b, d, Forrest J. Masters ^c, Ruogu Fang ^a △ 🖾

Annual DesignSafe Dataset **Awards**

Engineering Structures Volume 221, 15 October 2020, 111101

Observations and analysis of wind pressures on the floor underside of elevated buildings

Jae H. Kim ^a $\stackrel{\triangle}{\sim}$ Mohammadtaghi Moravej ^b $\stackrel{\boxtimes}{\sim}$ Elaina J. Sutley ^a $\stackrel{\boxtimes}{\sim}$ Arindam Chowdhury ^c $\stackrel{\boxtimes}{\sim}$, Thang N. Dao d ☑

Journal of Performance of Constructed Facilities / Volume 34 Issue 4 - August 2020

Technical Papers

Downloaded 144 times

Performance of Manufactured Housing during Hurricanes Irma and Michael

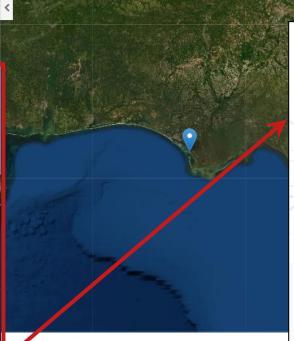
Mic (P-1

Elaina J. Sutley, Ph.D., A.M.ASCE; Karen Vazquez, S.M.ASCE; [6] Jae H. Kim, S.M.ASCE;

Thang Dao, Ph.D., A.M.ASCE

Reconnaissance Portal

Identifying Published Datasets from Recon Events


Recon Portal → **Data Depot**

Learn more about contributing.

Available datasets:

- . Hurricane Michael StEER P-**VAT Report**
- · Hurricane Michael Field Reconnaissance: Contrasting Performance of Structures at **Design Wind Speeds**
- · ARA Windfield Data Day
- . Hurricane Michael StEER FAT Early Access Report
- NHERI REU: Assessing Structural Damage During Hurricane Michael of Low-Rise Large-Volume Steel Structure using Structure-from-Motion and LIDAR
- NHERI REU: Survey and Investigation of Residential **Buildings Damaged by** Hurricane Michael
- · Assessing the Performance of **Elevated Wood Buildings** Including Manufactured Housing
- · Finalized StEER FAST and RAPID EF teams reports

PRJ-2113 | StEER - Hurricane Michael

Kijewski-Correa, Tracv

Prevatt, David; Roueche, David; Robertson, Ian; Berman, Jeffrey; Mosalam, Khalid; Grilliot, Michael

Project Type Field Research

Event Hurricane Michael | Panama City, FL | 10-10-2018 | Lat 30.0800° N Long 85.6075° W

Event Type Hurricane

DOI(s) in Dataset 10.17603/ds2-5aej-e227 10.17603/ds2-vmqv-rj36

Related Work Preliminary Virtual Reconnaissance Report (PVRR)

Early Access Reconnaissance Report (EARR)

Keywords StEER, Reconnaissance, Hurricane, Hurricane Michael, Damage Assessment, UAS, Laser Scan, Streetview

On October, 10 2018, Hurricane Michael made landfall just south of Panama City, FL with the National Hurricane Center reporting a minimum pressure 919 MB and maximum sustained winds of 150 mph. Regardless of its place in history. Hurricane Michael caused catastrophic damage from high winds over a wide swath that stretched across much of the FL panhandle and inland into southeastern GA and beyond, natural hazards engineering community to swiftly deploy a Field Assessment Structural Team (FAST). This FAST broadly assessed the performance of a representative subset of structural typologies in coastal and inland areas. Its teams conducted assessments between October 13-15, 2018, FAST collected data in Florida from Panama City Beach east and south to Indian Pass and north to Marianna. The communities assessed included: Panama City Beach, Panama City (and surrounding communities), Mexico Beach, Port St. Joe, Apalachicola, a few routes out to barrier islands in the region, and the inland communities of Blountstown and Marianna. As part of an independent yet complementary effort, the RAPID EF continued data collection on November 7-8, 2018 in and around Panama City and Mexico Beach, using a variety of technologies including unmanned aerial vehicles, laser scanners and applied streetview technologies. This self-funded initiative generated an additional dataset that complements the data collected by StEER and is thus curated jointly in this project. This project encompasses the final product of StEER's response to this event: Curated Dataset, linking to previously published products; Preliminary Virtual Reconnaissance Report (PVRR) and Early Access Reconnaissance Report (EARR).

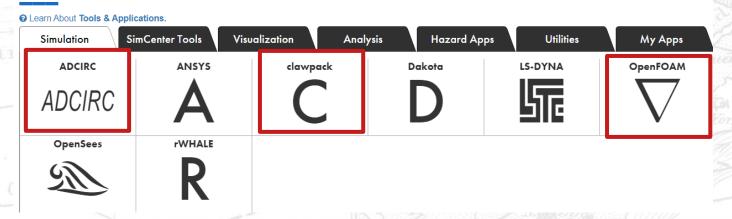
View Data Diagram

Mission | StEER Field Assessment Structural Team (FAST)

Mission I RAPID FF Team

TEXAS UCLA TAGG RICE Florida Tech

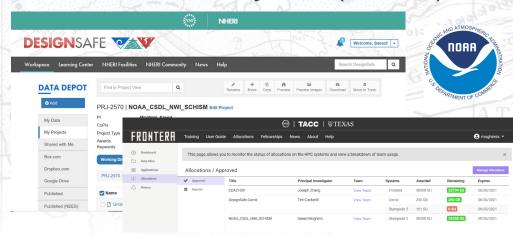
Download Datase



Tools & Apps: Simulation

TOOLS & APPLICATIONS

- HPC-enabled simulation codes (Stampede2, Frontera)
- Available through portal or at the Command Line, easy access to HPC allocation (CPUs, GPUs) through DesignSafe

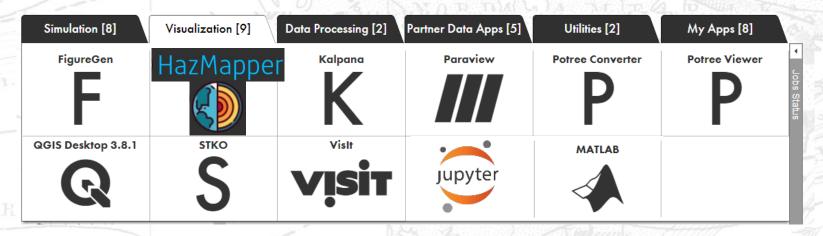


Simulation Support

- Assistance in installing codes on TACC HPC systems
- Inland-Coastal Flooding Operational Guidance System (ICOGS)

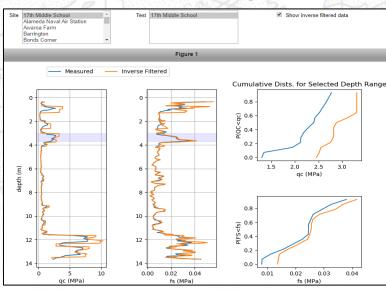
NOAA's inland coastal flood modeling system that enhances modeling capabilities for wet storms with storm surge and heavy precipitation

Contact: Saeed.Moghimi@noaa.gov



Tools & Apps: Data Analysis

- Cloud-based tools for data analysis and visualization
- Access to files in Data Depot

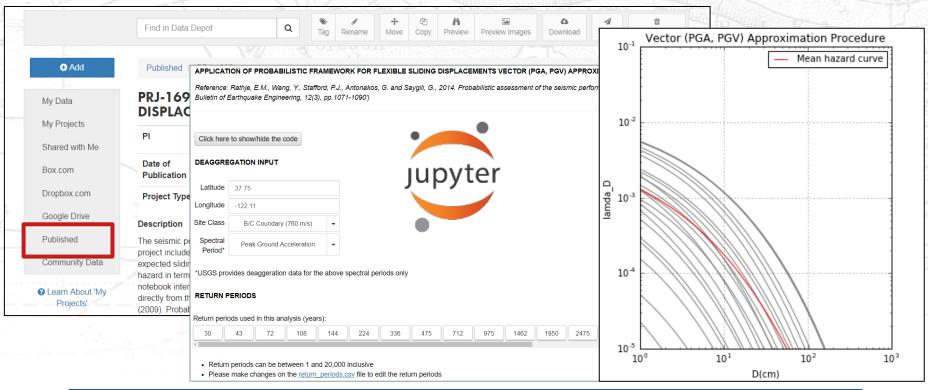


Jupyter Notebooks

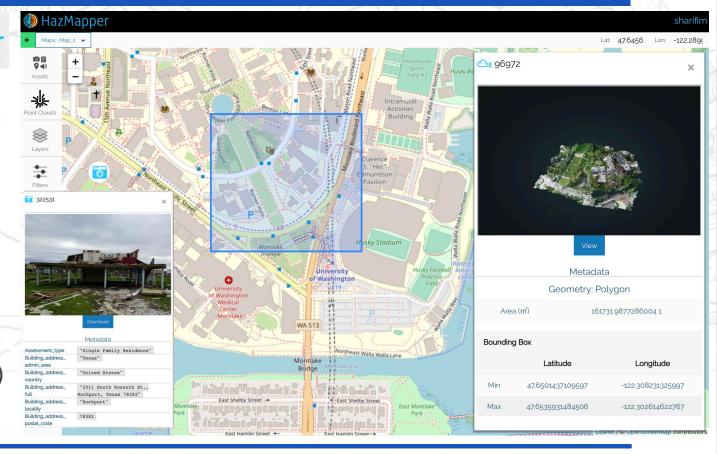
- Electronic notebooks in Python or R
- JupyterHub in DesignSafe
 - Access to Data Depot files
- Interactive data viewer
- Can write scripts for data processing, Al or machine learning
- Publish for use by others
- Accelerates data reuse, adoption of approaches into practice

Next Generation Liquefaction

From Scott Brandenberg (UCLA)



Interoperability with USGS EQ Hazard Tools



HazMapper

- Easy access to images and point cloud data
- Location and preview exposed
- Link to Potree viewer provided
- Links to Streetview imagery (Mapillary)

Learning Center

Workspace

Learning Center

Education & Training

Archived DesignSafe Webinars

https://tinyurl.com/DesignSafe-Webinars

DesignSafe Tutorials

Development and utilization of a relational database to support post-earthquake building damage and recovery assessment

March 12, 2021

Watch Tutorial

Experimental Data Workflow for Real Time Decision Making Using Python and Jupyter Notebooks

February 3, 2021

Watch Tutorial

Leveraging DesignSafe with TAPIS

December 17, 2020

Watch Tutorial

Best Practices to Enhance the Quality, Discoverability and Re-Use Potential for Post-Event Reconnaissance Data

November 11, 2020

- Watch Tutorial
- Presentation Slides

SimCenter Webinars

Physical Modeling of Wave Attenuation & Wave Force Reduction by a Mangrove Forest

December 4, 2020

Watch Webinar

Computational Frameworks for the Implementation of Performance-Based Wind Engineering

November 23, 2020

Watch Webinar

Partial Turbulence Simulation for Predicting Peak Wind Loads on Buildings

October 16, 2020

Watch Webinar

Hurricane Loss Analysis for Single-Family Houses Considering Current and Changing Climate Conditions

October 6, 2020

Watch Webinar

DesignSafe: We are here for you!

Available to the Global Natural Hazards Research Community

- Interact with us and the community using the DesignSafe Slack team
- Cite data using DOIs in your reference list!

Please share your feedback, ideas, experiences!

Ellen Rathje e.rathje@mail.utexas.edu

