

SHared Operational REsearch Logistics In the Nearshore Environment (SHORELINE21)

Workshop

NHERI WOW EF Overview

Speaker: Drs. Amal Elawady, Steven Diaz Florida International University

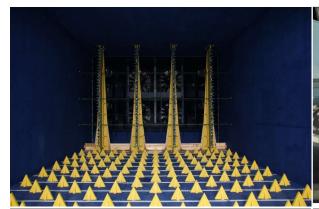
April 26, 2021

The Natural Hazards Engineering Research Infrastructure's (NHERI) Wall of Wind EF is supported by the National Science Foundation awards CMMI 1520853 and 2037899. Any statements in this material are those of the presenter(s) and do not necessarily reflect the views of the National Science Foundation.

NHERI WOW EF: Facility

- Open jet large wind tunnel
- 12 electric fans in an arc-focal arrangement
- Wind field cross-sectional area:
 20ftx14ft (WxH)
- Wind speed range: 10mph 157mph
- Open, Suburban and Uniform exposures
- Turn table diameter: 16ft
- Turn table capacity: 105,000lb static and 52,000lb dynamic
- Rotational speed range: 0.015-0.0014 min/deg

NHERI WOW EF: Facility



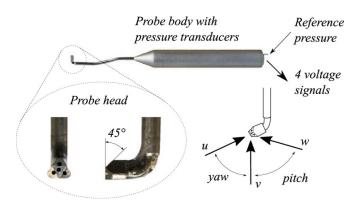
Building and Operations and Control Center

Control Room

Flow Management and Rain Nozzles

WOW Turntable (16 ft. Diameter)

Staging Area


Instrumentation

Scanivalve Pressure Scanner

Cobra Probe

Load Cells

Strain Gauge

Accelerometers

NHERI WOW EF Team

Arindam Chowdhury, PhD Director and Pl Professor

Ioannis Zisis, PhD

Co-Pl

Associate Professor

Manuel Matus
Graduate Student
Assistant

Walter Conklin

Laboratory and
EH&S Manager

Roy Liu-Marques
Project Engineer

Steven Diaz, PhDSite Operations Manager

James Erwin
Research Specialist

Dejiang Chen, PhD

Research Specialist

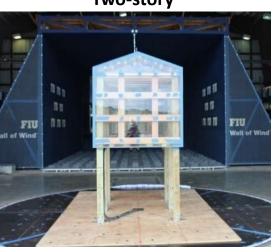
NHERI WOW EF: Key Strengths

Unique Experimental Resources and Testing Capabilities

- Up to Category 5 hurricane winds simulations
- Multi-Scale Testing (full-, large-, small-scale)
- Destructive Testing (to predict progressive failures in buildings and infrastructure elements)
- Wind-Driven Rain simulations (to study water intrusion)
- Various Structures (buildings, bridges, renewable energy systems, lifeline infrastructures)

Aerodynamic Testing

Example Project: Wind Effects on Elevated Houses



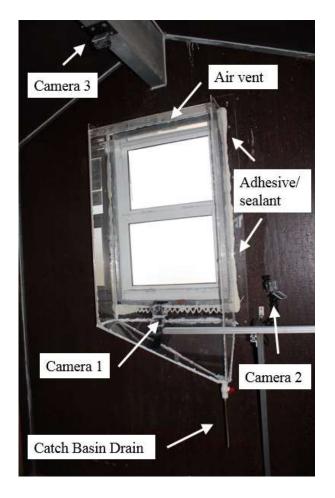
One-story

Two-story

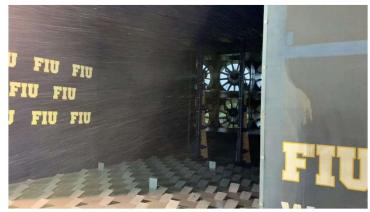
Abdelfatah, N., Elawady, A., Irwin, P., Chowdhury, A. (2020) "A Study of Aerodynamic Pressures on Elevated Houses" Wind and Structures, Vol. 31, No. 4 (2020) 335-350; doi: https://doi.org/10.12989/was.2020.31.4.335.

Abdelfatah, N., Elawady, A., Irwin, P., Chowdhury, A., (2020) "Wind Pressure Distribution on Single-Story and Two-Story Elevated Structures" (5th) Residential Building Design & Construction Conference, State College, Pennsylvania.

Aero-elastic Testing



Azzi, Z., Matus, M., Elawady, A., Zisis, I., Irwin, P., Chowdhury, A., (2020) "Aeroelastic Testing of Span-Wire Traffic Signal Systems" Frontiers in Built Environment, 6:111. doi: 10.3389/fbuil.2020.00111


Azzi, Z., Elawady, A., and Chowdhury, A., "Large-scale aeroelastic testing to investigate the resiliency of transmission infrastructure to hurricane storms" XI International Conference on Structural Dynamics EURODYN, Athens, Greece, 22–24 June, 2020.

Wind-Driven Rain Testing

Sai Vutukuru, K., Moravej, M., Elawady, A., Chowdhury, A., (2020) "Holistic Testing to Determine Quantitative Wind-Driven Rain Intrusion for Shuttered and Impact Resistant Windows" Journal of Wind Engineering and Industrial Aerodynamics, 206 (2020) 104359. https://doi.org/10.1016/j.jweia.2020.104359

Full-scale Testing

Example: Full-scale testing to study performance of systems under wind

Elawady, A., Alawode, K., Jae Lee, S., Sai Vutukuru, K., Zisis, I., Chowdhury, A., "Wind-driven Rain and Wind-induced Vibrations for Façade Systems" XI International Conference on Structural Dynamics EURODYN, Athens, Greece, 22–24 June, 2020.

Azzi, Z., Habte, F., Vutukuru, K., Chowdhury, A., Moravej, M., "Effects of roof geometric details on aerodynamic performance of standing seam metal roofs" Engineering Structures, Volume 225, https://doi.org/10.1016/j.engstruct.2020.111303

Destructive Testing

Example: Aeroelastic and aerodynamic responses of traffic signal systems

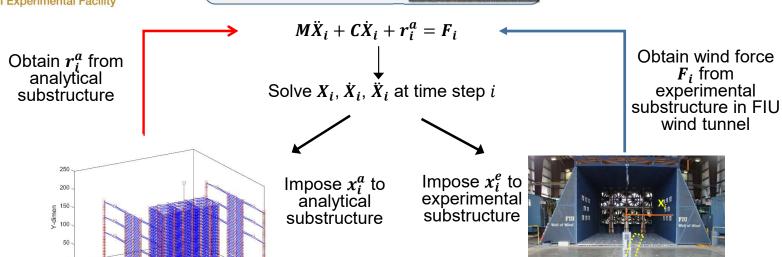
1:10 aeroelastic model tested at the WOW

New Capabilities!

Non-Synoptic, Downburst Flows and Their Interactions with Structures

Cross-Awardee Capabilities

WOW EF and Lehigh EF to enables Real Time Hybrid Simulation (RTHS) for wind applications


NSF-MECHS

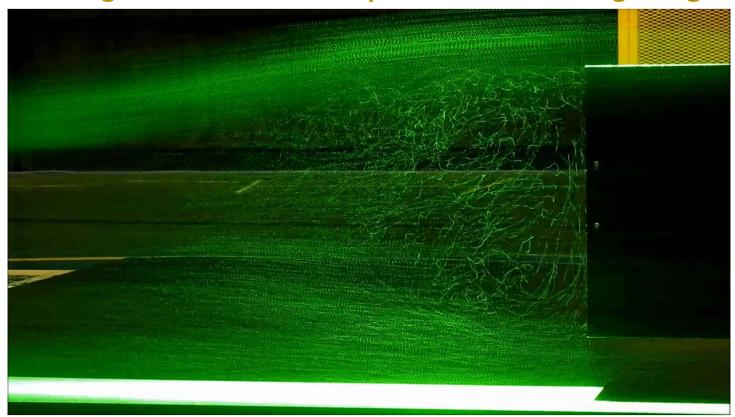
Obtain wind force

 F_i from

wind tunnel

40 story building equipped with a 40m monopole

Lehigh Facility with analytical Substructures


Aero-elastic building model

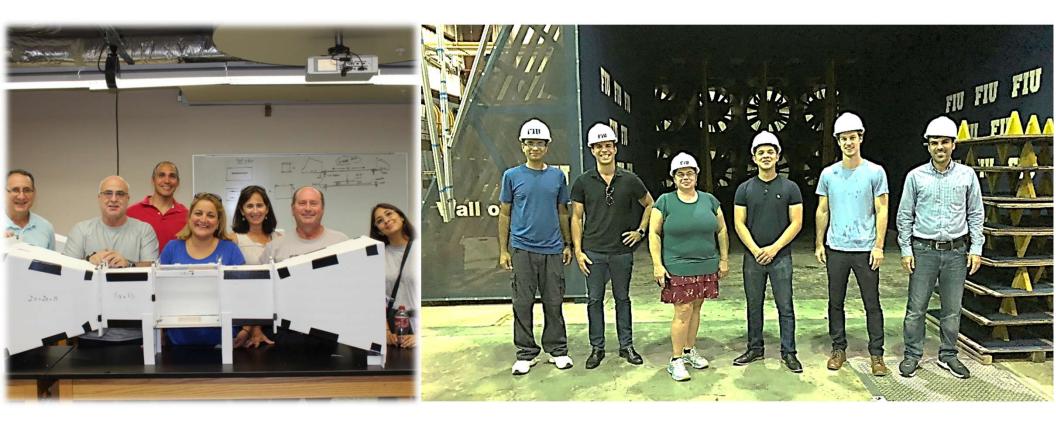
FIU Wind Tunnel with Experimental substructure

New Capabilities!

Example: Validating numerical and computational modeling using PIV system

Outcomes: New niche in fundamental fluid mechanics area to propel transdisciplinary research.

NHERI Vision


The vision for NHERI is to enable frontier research and education to:

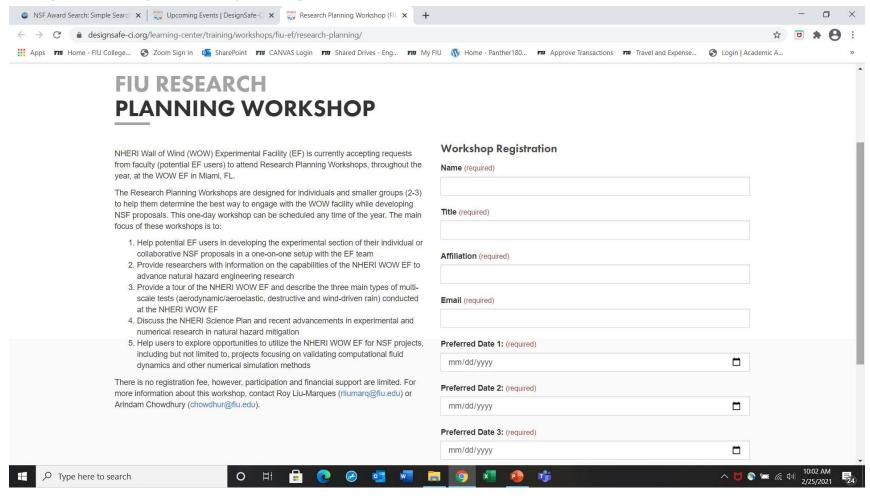
- Predict the lifecycle performance of civil infrastructure under hazards
- Reduce reliance on physical testing through computational modeling
- Translate research into innovative mitigation strategies and technologies
- Integrate research, education, outreach to train a inclusive STEM workforce

Integrate Research, Education, and Outreach

Example: REU, RET, K-12 Programs

Outcomes: Train teachers and students to build an inclusive STEM workforce

NHERI WOW EF Workshops



Research Planning Workshop

https://fiu.designsafe-ci.org/events/upcoming-events/

THE NHERI NETWORK IS SUPPORTED BY MULTIPLE GRANTS FROM THE NATIONAL SCIENCE FOUNDATION.

Acknowledgement

- NHERI WOW Experimental Facility is supported by a grant from the National Science Foundation (#1520853).
- Renewal of NHERI WOW Experimental Facility is supported by a grant from the National Science Foundation (#2037899).

Wall of Wind, International Hurricane Research Center WOW@fiu.edu • fiu.designsafe-ci.org