

Instrumentation Support and Data Processing/Visualization with the RAPID Facility

Joe Wartman and Jeff Berman
University of Washington
Dir. and Opps Dir., RAPID Facility

SHORELINE21

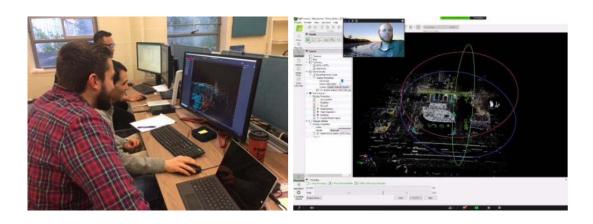
RAPID Facility

The RAPID facility provides investigators with the equipment, software, and support services needed to collect, process, and analyze perishable data from natural hazard events.

Since becoming field operational in 2018, the RAPID has supported over 70 deployments worldwide

Acquire, maintain, and operating stateof-the-art mission-ready instrumentation

Provide advisory services and basic logistics support for research investigations


RAPID Facility Activities

Train a broad user base

Field support, as needed

Provide user support through the project lifecycle

Unique Aspects of Natural Hazard Reconnaissance Data

- The high volume of data generated by an extreme event is often highly "perishable"
- Disaster data sets include the **real-world complexities** (e.g., interplay between natural, human, and built systems) that allow us to understand better and to quantify the socio-technical dimensions related to damage, restoration, and resiliency of the built environment;

Such data is difficult to duplicate in the laboratory

- These data can be used to:
 - develop new, fundamental discoveries and insights
 - test and verify simulation models; reduce reducing uncertainties in probabilistic models
 - inform next generation simulation models (e.g. AI algorithms)

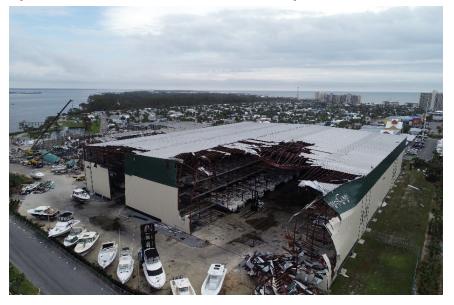
Strategic Approaches for Reconnaissance: Cross-Scale Data Collection and Synthesis, Across Disciplines

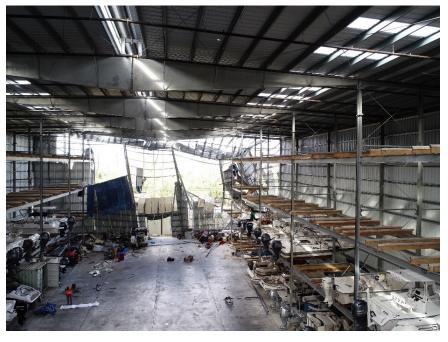
Cross-Temporal Scale - Resilience

- Pre-event: pre-existing "conditioning" factors
- Event: direct impacts, character of the event
- After-event: recovery and evolution

Cross-Geospatial Scale - Context

- Improving our understanding of hazard impacts and advancing regional scale modeling requires collection and synthesis of data over spatial scales spanning multiple orders of magnitude


Cross-Social Scale – Reaching all populations

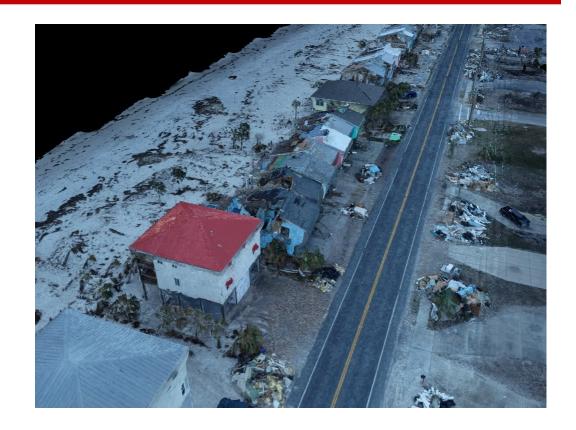

- Events can have varying impacts on socioeconomic groups

Multidisciplinary Data - Integration

Understanding of the complicated relationship between hazards, the built environment, and communities requires that the physical and socioeconomic factors leading to disasters be untangled.

Wartman et al. (2020) Front. Built. Env.

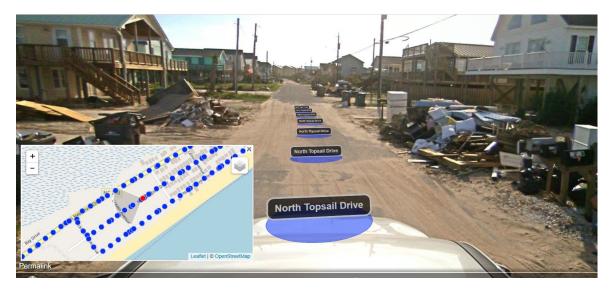
RAPID Instrumentation



https://rapid.designsafe-ci.org/equipment-portfolio/

Unmanned Aircraft Systems (UAS)

- Industrial: weatherproof, high-resolution data for SfM
- MiniRanger: lidar system



Streetview

Streetview data collected by StEER team (Daniel Smith, UF) after Hurricane Florence (NSF 1841667)

- Your own, personal Streetview
- 360-degree, car-mounted camera
- GNSS georeferencing
- Remove sensitive info (faces, license plates)
- Easy mount to vehicle
- Visualization Software for organizing and querying projects
- Growing interest in the Al community

3D Laser Scanning Equipment

Leica BLK360 (x3)

Leica RTC360

- Short, medium and long range systems
- Simple, easy to use interfaces
- Portable and durable
- Streamlined workflows

Leica P50

Maptek LR3

Maptek XR3

Coastal Equipment

Z-boat (Single Beam Echo Sounder)

Depth: 30cm to 600m RTK GNSS position 5cm Heave accuracy

Aquadopp Profiler 2 MHz

True Blue Water Level loggers (x20)

Depth: 0m to 200m Log rate: Up to 4Hz

Petit Ponar Grab Sampler

RJE Acoustic Beacon (x10)

Used to locate submerged equipment, i.e. True Blue and Aquadopp or others...

RApp: Field Data Collection Ecosystem

The data collection ecosystem is comprised of three main components:

DesignSafe-CI

- Cyberinfrastructure for the natural hazards community
- Cloud-based data storage, analysis, collaboration, and publication
- Provides user account services for RApp

Mission Control

- ◆ Web-based portal
- ◆ Create Checklists
- ◆ Create Questionnaires
- ◆ Review RApp data

RApp

- Mobile app used for data collection
- ◆ Data collected with RApp is automatically synced to Mission Control and DesignSafe-CI

Using the RAPID

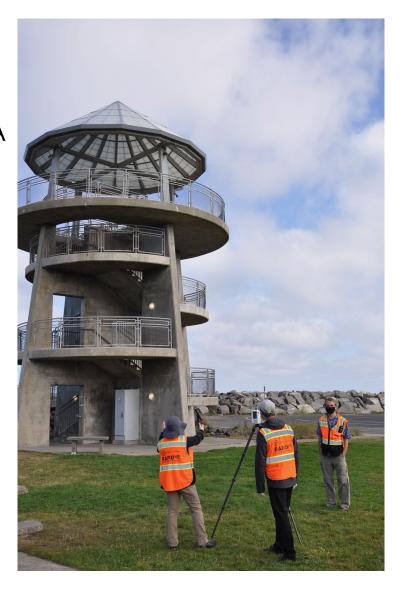
- Open to anyone:
 - Academics, government agencies, private industry, etc.
 - Different rates for NSF vs. non-NSF (RAPID equipment is subsidized by NSF)
 - Priority for natural hazards reconnaissance but can deploy equipment for many different applications
 - We aim to accommodate all requests
- Go to the RAPID website at <u>https://rapid.designsafe-ci.org/</u>

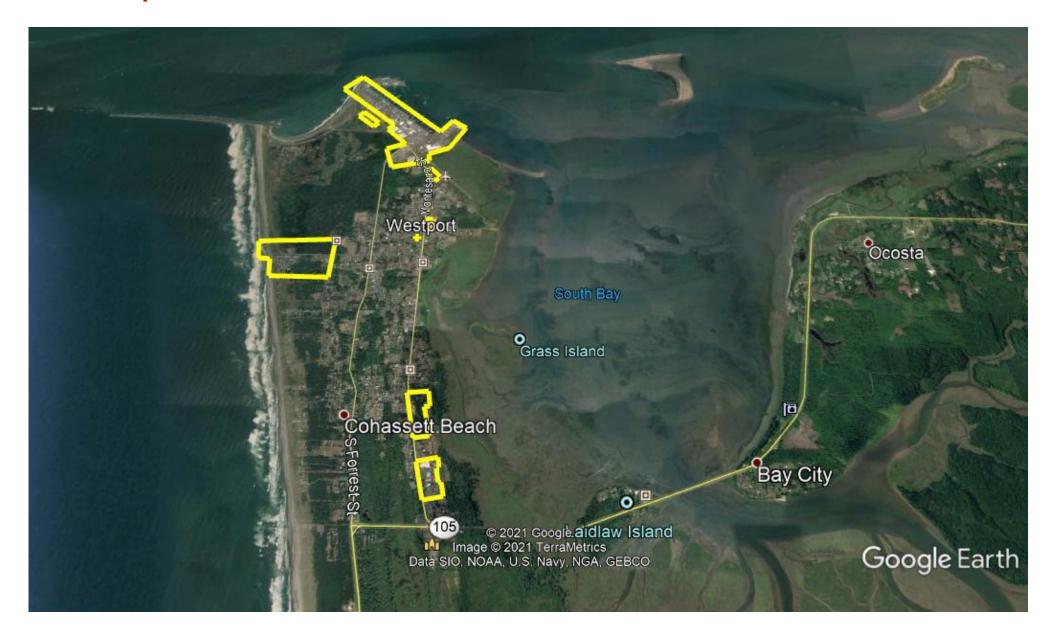
Data collected with long range lidar, processed in iSite

Collected by GEER reconnaissance team (Alex Grant, USGS, Robert Kayen, UCB/USGS, NSF 1826118)

Example Recent Projects

- Alaska rockfall investigation (PacTrans (FHWA) and Alaska DOT)
- Hokkaido, Japan earthquake (GEER)
- Hurricane Florence (GEER, StEER)
- Hurricane Michael (StEER, NSF Rapid Grant)
- Sulawesi, Indonesia earthquake and tsunami (GEER)
- Spangler landslide (OSU, ODOT)
- Breitenbush river restoration (OSU, USFS)
- Paradise, CA wildfires (NSF Rapid Grant)
- E-Defense shake table tests, Kobe, Japan (NSF Rapid Grant)
- Ridgecrest, CA earthquake (GEER)
- Hurricane Dorian, Bahamas (StEER)
- 2020 Hurricanes (StEER, GEER)

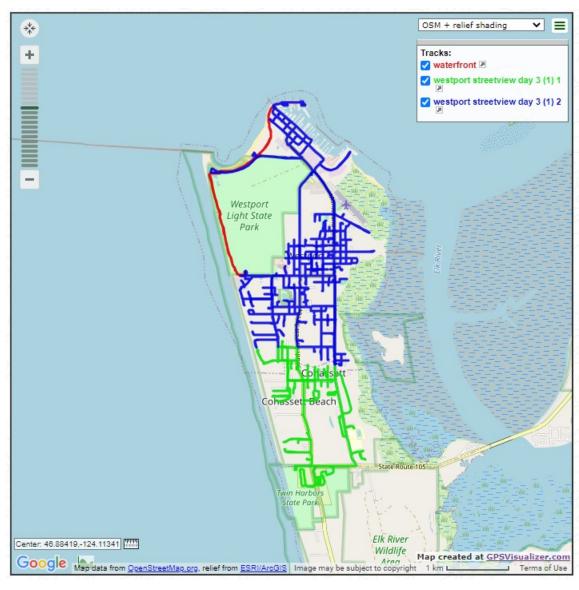



Westport, WA Data Collection

- PI: Dan Abramson (UW, Urban Planning), NSF Award#: 1940024
- Grant for exploratory research, to develop "geo-narratives" to help selected coastal WA communities for a CSZ generated tsunami
- Deployed RAPID equipment to Westport, WA
- ♦ August, 2020 for ~5 days
- Had a huge team including RAPID staff and CoPe EAGER researchers
- Gather data to assemble 3D models of key community assets:
 - Identified in collaboration with Westport (Kevin Goodrich and others)
 - Key facilities
 - Potential sites for vertical evacuation
 - Evacuation routes
 - Provide 3D geospatial data for use in geonarratives

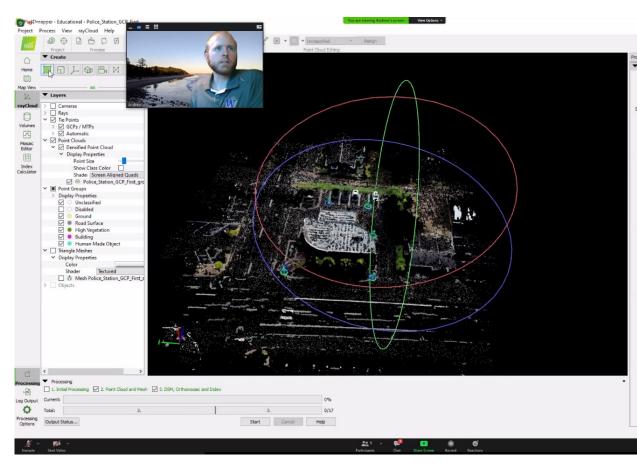
Westport, WA

Westport Data Collection


- UAS flights:
 - High flights over most of the city
 - Lower flights for detailed models over key assets
- GPS points for ground control
- Lidar for some key assets

Westport Data Collection

 Streetview over entire, including beachfront on foot and bike with backpack



Westport Data Processing

- RAPID staff processed:
 - Streetview data
 - GPS data
 - Some lidar
 - Initial SfM models from UAS images
- Partnerships with students from:
 - Geography (Bo Zhao's students)
 - Urban planning (Dan Abramson's students)
- Major number of hours required to process the large volume of data

Example Data Products: SfM Models

Example Data Products: SfM Models

Wastewater Treatment Plant

Example Data Products: Lidar

Example Data Products: Lidar

Example Data Products: Streetview

- Processed streetview imagery available on Mapillary
- https://www.mapillary.com/
- Direct link to Westport streetview: http://bit.ly/30JK3E2

Thank You https://rapid.designsafe-ci.org/

