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ABSTRACT  

 
The objective of this research was to provide an improved understanding of pedestrian-vehicle interaction 
at mid-block pedestrian crossings and develop methods that can be used in traffic operational analysis and 
microsimulation packages.  Models describing driver yielding and pedestrian gap acceptance behavior were 
developed from field data collected at 27 mid-block pedestrian crossings in three states (Alabama, Florida, 
and North Carolina), encompassing two different types of land use: university campuses and downtown 
areas.  The project included an in-vehicle driver behavior study with 15 drivers. This part of the data 
collection was performed in Florida and the results were used to develop nine simulation components 
describing various aspects of pedestrian-vehicle interaction. Specific outcomes for this research include: 
(a) a standalone model of pedestrian gap acceptance behavior at unsignalized crossings, (b) a driver yielding 
behavioral model, (c) models describing vehicle dynamics and driver behavior in advance of the crosswalk, 
(d) prototype algorithms incorporated and tested in a micro simulator, and (e) educational modules for 
dissemination of the research results. Key deliverables include the prototype algorithms implemented in 
simulation, a final report summarizing the research and findings, and educational modules on the research 
results that can be incorporated into university curricula, or serve as material for standalone professional 
development courses.  
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EXECUTIVE SUMMARY  

The objective of this research was to develop new and improved algorithms for describing pedestrian 
and vehicle interaction at unsignalized midblock pedestrian crossings and to implement them in a traffic 
simulation environment. The algorithms developed address pedestrian and driver behavior at mid-block 
crosswalks, based on targeted empirical observations of naturally occurring and staged crossings. The 
models describe pedestrian gap selection, driver yielding behavior, and other behavioral processes. All 
models were developed to be compatible in form with algorithms used in microsimulation tools, and have 
been implemented in a micro simulator for illustrative purposes and testing.  

The primary data collection included an observational study of pedestrian-vehicle interaction 
performed at 27 unsignalized mid-block crosswalks in Florida, Alabama, and North Carolina. The data 
collection protocol included video recording of pedestrian-vehicle interaction events, as well as 
measurements of vehicle speed and gap times in advance of the crosswalk. The response variables in the 
evaluation were the decision of a driver to yield to a pedestrian, and the decision of a pedestrian to accept 
a gap in conflicting traffic. Independent variables included the vehicle speed, necessary deceleration rate, 
gap length, pedestrian behavioral attributes, driver and vehicle characteristics, and site attributes.  

The final recommended driver yielding model uses the form of a binary logit model. In the 
recommended model, increased vehicle speed (SPD) was seen to reduce the likelihood of yielding, as did 
an increased required deceleration rate (DECEL). Presence of adjacent yields (ADJ), low speed platoons 
(LSPLT), presence of multiple pedestrians (MUP), and female pedestrians (FEMALE) were seen to 
increase the likelihood of yielding. Drivers were also more likely to yield to pedestrians on-campus 
(CAMPUS) than off-campus. For the universal model, all variables except for DECEL were significant at 
the p<0.05 level. 

The recommended gap acceptance model uses only two parameters, the size of the gap length in 
seconds, and a binary variable distinguishing between gaps and lag events (first arriving vehicle, without a 
prior lead vehicle to “open” the gap). An increase in gap length is associated with an increased probability 
of pedestrians crossing. A lag event has a negative coefficient, meaning that a pedestrian is less likely to 
accept a lag than a gap given the same length in seconds. This effect may be explained because the 
pedestrian may require some of the lag time to evaluate the available time to cross, after first arriving at the 
crosswalk. For a gap event, this “screening time” and decision making likely takes place before the gap 
“opens”.  

In addition, an instrumented vehicle experiment was conducted to provide insight on other simulation 
components and variables that define the interaction between vehicle(s) and pedestrian(s) at the crosswalk. 
The models are implemented in the simulation to supplement the yield and gap acceptance models described 
above. Overall, nine supplemental components were developed, for a total of eleven predictive models: 

 Driver Yield Decision (from observational study),  
 Pedestrian Gap Acceptance (from observational study), 
 Pedestrian-Vehicle Conflict Identification,  
 Driver Decision Distance,  
 Driver Yield Type Check,  
 Soft Yield Dynamics,  
 Hard Yield Dynamics,  
 Driver Yield Rejection Response,  
 Driver Wait Time,  
 Pedestrian Yield Recognition, and 
 Pedestrian Yield Rejection. 
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The eleven resulting algorithms were implemented in a microsimulation model to evaluate their 
effectiveness and accuracy.  The documentation of the behavioral models will allow for implementation of 
the algorithms in other simulation software packages as well. The behavioral models are based on empirical 
observations, and were derived from field observations of naturally occurring and staged pedestrian 
crossings.  

The project resulted in the following products: 

1. A driver yielding behavioral model developed from 27 unsignalized crosswalks in three states, 
sensitive to vehicle dynamics, pedestrian attributes, traffic condition, and geographical area 
(North Carolina, Florida, and Alabama); 

2. A standalone model of pedestrian gap acceptance behavior at unsignalized crossings, sensitive 
to the available gap length and distinguishing gap and lag events, and developed from data 
collected at 24 unsignalized crosswalks in three states; 

3. Nine supplemental model components describing various attributes of pedestrian-vehicle 
interaction, derived from an in-vehicle driver study with 15 participants conducted in Florida; 

4. Implementation of all eleven  algorithms in a simulation environment, which incorporates 
pedestrian-vehicle interactions at unsignalized crossings in a micro simulator; and  

5. Educational modules for dissemination of the research results to researchers and students in the 
southeast and nationally, supported by seamless technology transfer through the available 
simulation modules. 

This research has broad impact on the state of the practice of pedestrian analysis in the Southeast region, 
and likely beyond. The field of pedestrian analysis and modeling has documented gaps and limitations, and 
this research aimed to make significant improvements to the ability to model pedestrian traffic. In an age 
of increasing focus on accommodation of non-motorized road users in our transportation systems, engineers 
need tools to evaluate the impacts of different intersection treatments on both pedestrians and the conflicting 
vehicle stream. Oftentimes, engineering analyses include the use of microsimulation tools, which to this 
point had not been specifically calibrated for pedestrian-vehicle interaction behavior. The behavioral 
models resulting from this research will assist in evolving these microsimulation tools to the point where 
analysts can predict the operational characteristics of unsignalized pedestrian crossings. 

This research delivered an improved understanding of pedestrian and driver behavior at unsignalized 
midblock crossing points and provides practitioners with enhanced tools for considering pedestrian 
presence. This goal is being achieved by developing algorithms for microsimulation tools to model the 
interaction between pedestrians and drivers. The pedestrian-vehicle interaction simulation was 
implemented in a new microsimulator developed by Dr. Scott Washburn at the University of Florida.  This 
project adds pedestrian movement and interaction with vehicles to the existing model that is programmed 
in the C# programming language to demonstrate an application of the statistical interaction models in 
microsimulation.  The simulation developed for this project is a proof of concept, as the models of 
interaction can be applied in any microsimulation that includes vehicles and pedestrians. The simulation is 
time step based and once the simulation is initialized, all vehicle movements and decisions are made prior 
to pedestrian movements and decisions, at each time step. Major sub models developed for the simulation 
are the results of various data collection and modeling efforts from this research and are presented in detail 
in the previous chapters. 

Limitations of this research include those related to the scope and type of collected data, the modeling 
assumptions, and the implementation in simulation itself. All limitations are described in detail in Chapter 
7: Conclusions and Recommendations.  
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CHAPTER 1: INTRODUCTION 

Background 
Pedestrian safety and access are key contributors to livability in modern urban and suburban 

infrastructure systems, which focus increasingly on walkability and multi-modal transportation. An 
increasing number of local and state agencies are placing high priority on providing adequate pedestrian 
facilities. Pedestrian facility improvement projects aim to create recreational pedestrian paths, to revitalize 
downtown areas, or to create safe walking routes to destinations. With increasing focus on these types of 
pedestrian facilities, questions about pedestrian safety, the interaction of pedestrians and motorized traffic, 
as well as their operational effects, need to be explored. Especially when these pedestrian facilities intersect 
with streets, engineers have to decide how to control the interaction of the pedestrian and vehicle modes at 
the crossing. Oftentimes, traffic signals are not warranted (FHWA, 2009) at crossings without the adequate 
volumes of pedestrian and vehicle traffic, and even if warranted, other considerations may conflict with the 
installation of a traffic signal. As a result, many pedestrian crossings in the United States and in other 
countries are unsignalized. However, a thorough understanding of pedestrian (and driver) behaviors in these 
environments, and especially at unsignalized street crossings is lacking.  

The National Highway Traffic Safety Administration, NHTSA, lists a total of 4,743 pedestrian fatalities 
in 2012, and 76,000 pedestrian injuries in traffic collisions nationwide. The report further cites that the 
highest rates of pedestrian fatalities occurred during the hours of 4pm to 8pm (almost 26%) and 8pm to 
12am (almost 28%) on weekdays, suggesting a relationship between pedestrian safety and heavy PM peak 
hour traffic (NHTSA, 2014).  Pedestrian fatalities were highest in California (612), Texas (478), and Florida 
(476).  When the states are sorted by “Pedestrian Fatalities per 100,000 Population,” four of the top ten 
states were in the southeast (South Carolina, Louisiana, Florida, and North Carolina). These statistics 
underline the critical importance of improving pedestrian safety in the southeast region and the state 
included in the STRIDE consortium.  

An earlier study by NHTSA reports that 45% of pedestrian fatalities in 2001 are caused by improper 
crossing of a roadway or intersection, or failure to yield right-of-way (NHTSA, 2003), which underlines 
the importance of proper pedestrian facilities for potential pedestrian crossing locations. The same 
document confirms that 70% of the pedestrian fatalities happen on roadway crossings and intersections 
with or without crosswalks, and found that 41% of fatalities happened on locations where a crosswalk was 
not available. No statistical data was found on the portion of pedestrian collisions at signalized and 
unsignalized intersections. 

While recent national-level research has explored impacts of a range of pedestrian crossing treatments, 
and developed new pedestrian signal warrants (Fitzpatrick, et. al. 2006), the macroscopic approach used in 
that research is inadequate for simulation-based evaluation of driver and pedestrian interactions. In the 
current state of engineering practice, microscopic traffic simulation tools are routinely used to explore and 
quantify the performance of various intersection treatments. In one recent example, simulation was used to 
quantify the operational impacts of pedestrian signalization at modern roundabouts to vehicular traffic 
(Schroeder, et al. 2008). Through simulation, the authors were able to draw conclusions about innovative 
signal strategies and crosswalk configurations that may help alleviate pedestrian-induced vehicular delay, 
while providing safe crossing opportunities for pedestrians. The recent success of simulation is attributable 
to its ability to replicate variability (for example, in driver behavior), to consider system effects, and to 
produce sophisticated 3D and 4D visualization output to use in stakeholder outreach. However, 
consideration of pedestrian behavior in simulation is currently limited and is recognized as one of top ten 
key research needs in traffic simulation (FHWA, 2004). Of particular research need is the interaction 
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between pedestrians and vehicles at unsignalized pedestrian crossings, and in particular, simulation 
algorithms to describe pedestrian gap acceptance and driver yielding behavior.  

Previous work by members of the research team (Schroeder, et al. 2011) has defined a framework for 
describing the accessibility of an unsignalized crossing to pedestrians as a function of four factors: 1. The 
availability of crossing opportunities in the form of yields and crossable gaps, 2. the rate of utilization of 
these opportunities by pedestrians, 3. the delay incurred until an opportunity is utilized, and 4. the level of 
risk experienced when attempting a crossing. It also builds on prior work on driver yielding behavior 
(Schroeder and Rouphail, 2011a) and pedestrian gap acceptance behavior (Schroeder and Rouphail, 
2011b); both focused on pedestrian behavior at midblock crossings. In the context of the aforementioned 
framework, this project developed behavioral models for the first two factors (i.e., availability and 
utilization of gaps and yields), incorporated them in a simulation environment, and estimated factor three 
(delay). While some research has explored the ability of simulation to also predict the fourth factor in the 
level of risk (e.g. FHWA Surrogate Safety Assessment Methodology, SSAM), the modeling of pedestrian 
risk is beyond the scope of this effort.  

Project Objectives 
The objective of this research was to develop new and improved algorithms for describing pedestrian 

and vehicle interaction at unsignalized crossings and to implement them in a traffic simulation 
environment. The algorithms developed address pedestrian and driver behavior at mid-block crosswalks, 
based on targeted empirical observations of naturally occurring and staged crossings (i.e., those where the 
pedestrian in the interaction is one of the researchers). The models describe pedestrian gap selection and 
driver yielding behavior, and are compatible in form with algorithms used in microsimulation tools.  

The behavioral models were developed based on empirical observations, including both natural and 
staged pedestrian crossings. Staged crossings were used at sites where there were few naturally occurring 
pedestrians observed. Study sites were located on university campuses as well as at downtown areas.  

This research also developed and implemented algorithms in a traffic micro simulator. Detailed 
documentation of these models is provided to allow for their implementation in other simulation software 
packages. 

Project Impact and Products 

This project addresses two main themes cited in the STRIDE mission statement, namely safety and 
livability. STRIDE’s focus on safety considerations is addressed in relation to pedestrian crossings at 
unsignalized intersections, where shared right of way rules are often unclear and sometimes violated. The 
research also addresses human factors issues in formulating behavioral algorithms that go beyond 
traditional yield or gap acceptance models. The models are based on such explanatory variables as 
pedestrian level of assertiveness, presence of platoons behind the subject vehicle, crossing treatments, and 
driver required deceleration rates among other factors.  

On the livability side, this research tackles the issue of pedestrian facility evaluation and modeling, 
including the effect of infrastructure and the built environment on both pedestrian and driver behavior. 
Pedestrian behavior is modeled as a function of the crossing width, prevailing speed limit, as well as land 
use factors surrounding the crossing. Driver behavior models are based on naturalistic driving observations 
from 15 drivers.  The vehicle and pedestrian interaction system was modeled in microsimulation and is 
well documented so that developers of other micro simulators may also incorporate these models in other 
tools.  
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This research delivers an improved understanding of pedestrian and driver behavior at unsignalized 
crossing points and will provide practitioners with enhanced tools for considering pedestrian presence. This 
research enhances livability by more accurately considering access (and impediments to it) in urban street 
analyses. Results from this research may be used to support policy-level recommendations on multimodal 
transportation infrastructure design that considers pedestrian access. In summary, the research produced: 

1. A series of pedestrian behavioral models regarding yield and gap acceptance by pedestrian user 
class, traffic condition, and geographical area (North Carolina, Florida, and Alabama) at 
midblock crosswalks; 

2. A similar set of driver yielding behavioral models across the same factors as in (1); 

3. Prototype algorithms which for the first time will incorporate pedestrian-vehicle interactions at 
unsignalized crossings in a micro simulator; 

4. An ability to study the impact of pedestrian and vehicle interactions on system performance in a 
simulation environment, and obtain delays to vehicles and pedestrians, as well as the capacity of 
unsignalized crossings; and 

5. Presentations, publications, and educational modules for dissemination of the research results to 
researchers and students in the southeast and nationally, supported by seamless technology transfer 
through the available simulation modules.  

This research has a broad impact on the state of the practice of pedestrian analysis in the Southeast 
region, and beyond. The field of pedestrian analysis and modeling has documented gaps and limitations, 
and this research made significant contributions in our ability to model pedestrian-vehicle interactions.  In 
an age of increasing focus on accommodation of non-motorized road users in our transportation systems, 
engineers need the tools to evaluate the impacts of different intersection treatments on both pedestrians and 
the conflicting vehicle stream. The behavioral models resulting from this research are expected to evolve 
microsimulation tools to the point where analysts can predict the operational characteristics of unsignalized 
pedestrian crossings, which is an area that is not well documented at the present time. 

Report Organization 
This report is organized in seven chapters and several appendices which provide more detailed 

documentation. Chapter 1 provided background on the project and a summary of the study objectives. 
Chapter 2 provides a literature review of prior work related to the subject matter. Chapter 3 presents the 
analysis framework for this project, followed by a discussion of the data collection methodology in Chapter 
4. Chapter 5 presents the modeling results in the form of driver yielding models, pedestrian gap acceptance 
model, and other driver behavioral models. Chapter 6 presents the implementation of these models into a 
micro simulator followed by a conclusions and recommendation discussion in Chapter 7. 
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CHAPTER 2: LITERATURE REVIEW 

Introduction 
A thorough literature review was performed in this study to gain an in depth understanding of current 

practices and existing knowledge gaps with respect to modeling pedestrian and vehicle interaction. The 
review of literature concentrated on pedestrian stream models, current analysis methods for various facility 
types, pedestrian behavioral attributes, and approaches for data collection and performance estimation. This 
chapter provides a brief summary of recent published literature pertaining to pedestrian- vehicle interactions 
at unsignalized crossings with emphasis on the pedestrian gap acceptance and driver yielding behavior 
studies. The detailed literature review is available in Appendix A. 

Background 
Current traffic engineering analysis tools and capacity models are of limited use for evaluating the 

interaction of pedestrians and vehicles at unsignalized crossing facilities. The analysis methodologies for 
unsignalized intersections in the 2010 Highway Capacity Manual (HCM) are traditionally limited to 
boundary cases, which assume strictly enforced right-of-way rules (TRB, 2000). These assumptions mean 
that pedestrian operations are analyzed by either assuming pedestrian priority (100% driver yielding) or 
vehicle priority without yielding right-of-way to pedestrians (Schroeder and Rouphail, 2011). More 
complex interaction of the two modes in which some drivers yield to pedestrians and some pedestrians 
accept gaps in traffic is typically ignored in traditional HCM methods. This type of interaction was 
previously referred to as a mixed-priority crossing (Schroeder and Rouphail, 2010) and is very common in 
the field.  

Changes in the 2010 HCM (TRB, 2010) have made an attempt at combining pedestrian gap acceptance 
and driver yielding behavior for pedestrian delay analysis, but the revised methodology is not based on 
empirical observations and has not been calibrated by field observations. In practice, alternative analysis 
tools in the form of microscopic simulation applications are frequently used to help overcome some of the 
limitations of the HCM procedures. 

Gap Acceptance 
The review of the literature confirmed that pedestrian crossing behavior has not been explored to the 

same degree that vehicle gap acceptance has been investigated. While similar in concept, there are a variety 
of pedestrian characteristics and caveats in the interaction between the pedestrian and vehicle modes that 
require separate pedestrian gap acceptance models.  

Traditionally, literature on vehicle gap acceptance has used a constant value of critical gap (CG) that 
is calibrated for local conditions (Troutbeck and Brilon, 2002). By definition, the critical gap is the time 
between consecutive vehicles on the major road at which a vehicle waiting at the minor approach is equally 
likely to accept the gap or reject it. It can differ depending on the type of movement and the type of vehicle.  

There are several ways for estimating CG from field data, including a graphical method (Troutbeck and 
Brilon, 2002), a regression method (Troutbeck and Brilon, 2002), a statistical method based on maximum 
likelihood estimation (Troutbeck, 2001), and the Ramsey-Routledge method (ITE, 2010). In application of 
these methods, the capacity of the minor street flow (in veh/hr) becomes a function of the CG on the minor 
approach tc, the follow-up time on the minor approach tf and the conflicting major street flow qp as shown 
in Equation 1, adopted from the HCM2010 for Two-Way Stop-Controlled intersections (TRB, 2010). 
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    Equation 1 

The follow-up time is defined as the time needed for additional vehicles in a stored queue to accept the 
same gap. The size of tf is typically less than tc, because some of the decision and acceleration times for 
subsequent vehicles occur during the initial gap. 

In addition to deterministic gap acceptance, a report compiled for the Federal Highway Administration 
(FHWA) Next Generation Microsimulation (NGSIM) research effort (Cambridge Systematics, 2004) 
discusses probabilistic gap acceptance models, for which the driver response for an identical event (same 
speed, same gap in conflicting traffic) can be drawn from a probabilistic distribution of possible responses. 
Such probit models assume a mean CG with a random variance term depending on the specific coefficients 
defined for a driver and/or situation. Conceptually, probit models could represent inconsistent driver 
behavior and a heterogeneous population by drawing gap acceptance decisions from random distributions. 

Alternatively, probabilistic behavior can be modeled in the form of a binary or multinomial logit model. 
A logit model could describe the likelihood of gap acceptance as a function of a number of different 
parameters (for example assertive vs. non-assertive pedestrians, gap time, and type of the arriving vehicle). 
It thus introduces greater complexity in the gap acceptance model, but in turn requires a lot of data for 
calibration. Logit Gap Acceptance Models have been proposed by Ben-Akiva and Lerman (1985) and 
Cassidy (1995) and Probit Models were suggested by Mahmassani and Sheffi (1981) and Madanat (1994). 

Some researchers have proposed even more complex algorithms for modeling gap acceptance. Kita 
(1993) used neural networks to describe the process, under the assumption that gap acceptance is not a 
linear sequence of events, but that multiple factors affect the decision making process. This modeling 
approach is capable of removing consistency assumptions, but the authors upheld the assumption of 
homogeneity. 

Models for Pedestrian Gap Acceptance 
The deterministic gap acceptance model in the HCM2010 (TRB, 2010) offers a method for estimating 

critical gap tc as a function of crosswalk length L, Pedestrian Walking Speed Sp and pedestrian start-up 
time ts (Equation 2). 

     Equation 2  

Rouphail et al. (2005) described pedestrian gap acceptance as the sum of latency (response delay) and 
actual crossing times, an approach similar to the HCM method discussed above. The authors used field 
estimates of the median latency time in place of the HCM start-up time. The authors’ research compared 
latency times of blind and sighted pedestrians and found that blind pedestrians exhibited significantly larger 
latency times, resulting in longer critical gap values and presumably more delay. The increased delay to 
blind pedestrians is consistent with research findings presented above. 

Researchers have also attempted to use advanced gap acceptance models to describe pedestrian 
crossings. Sun et al. (2002) calibrated probit and binary logit models to describe both pedestrian gap 
acceptance and driver yielding from actual field data. The authors excluded about 25% of observations for 
later model validation and found that binary logit models performed best in both cases, correctly predicting 
85.6% of gap acceptance and 87.1% of yielding decisions. For comparison, a probit model only resulted in 
68.5% correctly predicted gap acceptance decisions, and a deterministic critical gap model actually 
achieved a surprising 81.5% correct predictions. Regression analysis found the important factors for 
pedestrian gap acceptance to be gap size, number of pedestrians waiting, and age of pedestrians. The authors 
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recommended the binary- logit model for estimation, stating that the good performance of the deterministic 
model was likely due to an extraordinarily homogeneous pedestrian population. 

From observations in China, Yang et al. (2006) derived a pedestrian gap acceptance formulation for the 
critical gap (CG) of pedestrians. This Equation (3) is shown below, where L is the length of the crossing, S 
is the walking speed and F is a factor of safety based on the pedestrian’s confidence. 

 CG = L/S + F   Equation 3 

Similar assumptions for pedestrian gap acceptance were used in the analysis of unsignalized pedestrian 
crossings at roundabouts and channelized right turn lanes by Rouphail et al. (2005) and Schroeder et al. 
(2006), respectively. Schroeder (2008) developed logistic regression-based gap acceptance models for 
unsignalized crossings to better describe the process of pedestrian gap acceptance by incorporating vehicle 
dynamics, pedestrian characteristics and concurrent events at the crosswalk. 

Driver Yielding Behavior 
Driver yielding behavior has been linked in research to operational characteristics such as vehicle 

speeds (Geruschat and Hassan 2005), as well as geometric characteristics of the crosswalk location, for 
example; entry versus exit leg at a roundabout (Rodegerdts, 2007, Ashmead et al., 2005). But to date, these 
isolated studies of driver yielding behavior at unsignalized crosswalks have largely been descriptive, with 
little insight gained towards predicting driver yielding at such crosswalks. The rate of driver yielding to 
pedestrians at unsignalized crosswalks varies across locations (Rodegerdts, 2007), but in nearly all cases is 
less than 100%. A range of treatments exist that are intended to increase the rate of driver yielding 
(Fitzpatrick, 2006). 

Findings of pedestrian operations at roundabouts by NCHRP report 572 (Rodegerdts, 2007) show that 
43% of the drivers at two-lane approaches of the roundabout do not yield to pedestrians. The lack of yielding 
is only 17% for single-lane roundabouts. Lack of yielding is also higher at exit (54% not yielding) compared 
to 33% not yielding at the entry. Based on these findings, the number of lanes and crosswalk location (entry 
or exit) are the two design elements that affect pedestrian accessibility at roundabouts. 

A study by Salamati et al. (2012) at six two-lane roundabout approaches across the country showed that 
the yielding rate varies from 0% to 85% at the exit and entry leg of roundabouts depending on pedestrian 
assertiveness to cross the street, pedestrian disability (blind or sighted), entry or exit leg of the roundabout 
and the study location. 

In previous research, Sun et al (2002) collected data on driver yielding and pedestrian gap acceptance 
at an unsignalized midblock pedestrian crossing and compared the fit of different statistical models. The 
authors estimated yielding probabilities based on the discrete parameters of driver gender, driver age, type 
of vehicle, number of pedestrians and the presence of an opposing yield. They found that drivers are more 
likely to yield to a group of pedestrians and that older drivers were more likely to yield than younger drivers. 
Their results also showed that a logistics modeling approach outperformed a probit model for driver 
yielding, as well as for pedestrian gap acceptance. The authors collected 1.5 hours of data for each AM and 
PM peak over 5 days, for a total of 15 hours of data. The resulting samples included 687 accepted gaps, 
938 rejected gaps and 1254 motorist yield data points, and were deemed sufficient to estimate statistically 
significant probit and logit models. However, the authors looked at only one crosswalk and did not analyze 
any pedestrian treatment effects.  

The research findings above can be summarized in that the decision of a driver to yield is a function of 
both operational and behavioral parameters. In the first category, the yield decision is triggered by both the 
speed of the vehicle and the assertiveness of the pedestrian. In the behavioral category, drivers may be 
influenced by clothing and the number of pedestrians at the crosswalk. Similarly, it can be hypothesized 
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that yielding is impacted by the presence of a conflict downstream of the crosswalk. There are also cases 
where a driver may be forced to yield, because of a pedestrian’s decision to proceed with crossing in a too-
short gap in traffic. 

Summary  
The literature review and synthesis reaffirms that there is a need to develop robust pedestrian gap 

acceptance and driver yield behavior models based on a broad set of data collected at various locations, and 
to gain a better understanding of the true dynamics of pedestrians and vehicles at unsignalized midblock 
locations. To fulfill this need, this study developed enhanced behavioral models based on empirical 
observations at midblock pedestrian crossings in Alabama, Florida, and North Carolina, as well as 
naturalistic driving data in Florida. Details on the study methodology and results follow.  
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CHAPTER 3: ANALYSIS FRAMEWORK 

This chapter presents the analysis framework underlying this research. It discusses elements of 
pedestrian-vehicle interaction and the translation of these interaction parameters into algorithms suitable 
for integration in a microsimulation environment. The framework and algorithms concepts then form the 
basis for the data collection methodology described in Chapter 4.  

Nature of Pedestrian-Vehicle Interaction 
Pedestrian-vehicle interaction occurs whenever a desired vehicle movement and pedestrian movement 

conflict. This includes crosswalks at intersections, midblock crosswalks, and even jaywalking. The type of 
interaction varies based on geometry, legal restrictions, and driver and pedestrian judgment. At signalized 
intersections, pedestrians are given the right of way to cross the street during the pedestrian walk phase. 
However, it is more difficult to identify the pedestrian right-of-way at unsignalized midblock crossings. 
Frequently, state laws give pedestrians the right of way while crossing within the crosswalk, however, field 
observations indicate that these crossing events have mixed priority with less than 100% yield rate. At the 
same time, some drivers yield to pedestrians waiting at the crosswalk, even though they are not legally 
required to do so in most states. Ultimately, the yielding rate of drivers varies from one crosswalk to the 
other and across states and regions. Whenever drivers do not yield, pedestrians make gap judgments for 
crossing in-between successive vehicles.  

This project focuses on identifying and modeling mixed-priority (some drivers yield to create crossing 
opportunities for pedestrians, other pedestrians use judgment to for accepting gaps) crossing events at 
unsignalized midblock locations. The crossing event must be clearly defined for both field observation and 
application of any models developed. The pedestrian-vehicle interaction event is defined by Schroeder and 
Rouphail (2011) as a pedestrian arriving at a crosswalk influence area (CIA) when a vehicle is approaching. 
Crosswalk influence area (CIA) is defined as the area in the proximity of the crosswalk that is within line 
of driver sight distance and pedestrians wait to cross the street. During the data collection, an observer 
records pedestrian and vehicle characteristics when the pedestrian has indicated intent to cross whether in 
a gap in traffic or in front of a yielding vehicle. The driver’s reaction is then classified as either yielding by 
slowing and/or stopping to allow the pedestrian to cross, or not yielding.  While it is assumed that 
pedestrians will utilize any crossing opportunity, certain pedestrian populations, such as visually impaired, 
may not be able to identify and therefore utilize some crossing opportunities. Therefore, yield or gap 
utilization rate by pedestrians is not typically 100%. 

Pedestrian-Vehicle Interactions Modeling Approach 
Driver yielding and pedestrian gap acceptance are choices which are discrete in nature.  Discrete choice 

modeling of yielding has been used in prior research by Sun et al. (2003) and Schroeder and Rouphail 
(2011).  A pedestrian’s choice to accept a gap can be modeled as a binary choice of accepting or rejecting.  
In the case of pedestrians, a binary choice model can be considered to identify the probability of accepting 
a gap for a given set of conditions.   

A driver’s decision to yield can also be broken down into a binary choice of yielding or not yielding 
for a pedestrian, but the type of yield can also be separated by a complete stop (called hard yield) and a 
rolling stop (called soft yield).  When considering the final three outcomes of no yield, soft yield, and hard 
yield there are many discrete choice model structures that can be considered.  There are three major 
structures used to model discrete choices with more than two outcomes: multinomial logit, ordered logit, 
and nested logit.  Each of the models are discussed in the following subsections. 
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Binary Logit and Probit Models 

In binary logit models, decision maker q considers choices i and j.  Decision makers select between the 
choices based on their utility Uqi and Uqj.  Decision maker q has both a systematic utility and random utility 
as shown in Equation 4.  The systematic utility for choice i can be estimated using Equation 5 using n 
variables.  Variables that describe attributes of the two alternatives are used in Vqj, while variables that 
describe decision maker characteristics and the constant β0 are not included in Vqj.  The random component 
of utility εq is assumed to be distributed according to the standard logistic function.  The probability of 
decision maker q making choice i is then shown in Equation 6.  SAS uses maximum likelihood estimation 
to find values of β that best estimate the decisions observed in the dataset. 

 Uq = Vq + εq Equation 4 

 ⋯  Equation 5 

  Equation 6 

The binary probit model uses identical formulation with the assumption that the random component of 
utility εq is assumed to be distributed according to the standard normal distribution.  This results in a 
probability of choosing alternative i Pq(i) = Φ( ) 

Multinomial Logit Model 

In multinomial logit models (MNL), decision maker q considers K alternatives from the choice set Cq 
= {1, 2, … , K}.  Decision makers select between the choices based on their utility Uqi for each alternative 
i.  Decision maker q has both a systematic utility and random utility as shown in Equation 7.  The systematic 
utility for choice i can be estimated using Equation 8 using n variables.  Variables that describe attributes 
of the alternatives are used in Vq for each alternative i, while variables that describe decision maker 
characteristics and the constant β0 are not included in the final utility function VqK.  The random component 
of utility εq is assumed to be distributed according to the standard logistic function.  The probability of 
decision maker q making choice i is then shown in Equation 9.  SAS uses maximum likelihood estimation 
to find values of β that best estimate the decisions observed in the dataset. 

 ∀	 	 ∈  Equation 7 

 ⋯  Equation 8 

 
∑	∀	 	∈

 Equation 9 

Ordered Probit Model 

In the ordered probit formulation of the ordered response model, decision maker q considers K 
alternatives from the choice set Cq = {0, 1, … ,K-1}.  Decision makers select choice k if and only if their 
propensity (in this case, propensity to yield) Uq is between boundaries ψk-1 and ψk, where ψ-1 = -∞ and ψK-

1 = ∞.  Decision maker q has a systematic and unknown propensity as shown in Equation 10.  εq is assumed 
to be distributed according to the standard normal distribution, while Vq is estimated for n parameters as 
shown in Equation 11. Equation 12 shows how the probability for decision maker q is calculated under this 
assumption, where Φ(x) represents the CDF of the standard normal distribution.  SAS uses maximum 
likelihood estimation in order to find the values of ϕ and β that can best recreate the observed choices. 

 Uq = Vq + εq Equation 10 
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 ⋯  Equation 11 

 	  Equation 12 

Nested Logit Model 

The nested logit model (NL) is a special case of the multinomial logit model. (Wen and Koppelman, 
2001)  In the multinomial logit model, all outcomes are considered independent, while the nested model 
incorporates correlated outcomes.  Correlated outcomes are grouped into “nests”, and each nest is 
considered independently.  In the nested logit model, Equation 13 describes the decomposition of the 
probability of alternative n as the sum of the product of Pm, the probability of nest m, and Pn/m, the probability 
of choice n if nest m is selected. Pm and Pn/m are described in Equation 14 and 15 respectively.  In these 
equations,  characterizes the portion of alternative n that is assigned to nest m, and must be greater 
than zero and sum to one across all nests.   is the utility for alternative n, while  is the logsum 
parameter for nest m, with a value between zero and one. 

 ∑ /  Equation 13 

 
∑ ∈

∑ ∑ ∈

 Equation 14 

 /
∑ ∈

 Equation 15 

Model Selection 

Pedestrian gap acceptance will be modeled using binary logit or probit models and then simulated in a 
microsimulator. The pedestrian decision to begin crossing has two distinct outcomes (GO = 1, NoGO = 0). 
The driver yielding behavior is more complex and the desired model formulation must reflect the 
assumptions of the driver’s available choices.  In the MNL model, each alternative is assumed independent, 
but since hard yield and soft yield are both types of yield, this structure is not ideal.  The ordered probit 
model works on the assumption of a natural order of alternatives, but the three choices for a driver do not 
have a clear order.  The nested logit model provides for correlation between hard yield and soft yield without 
ordering choices, but the model parameters are somewhat difficult to interpret.  Therefore a pseudo-nested 
logit model is used for driver yielding, where a binary logit model predicts the binary outcome (Yield = 1, 
Non-yield = 0) and a second binary logit model is used to predict the binary outcome (Hard Yield = 1, Soft 
Yield = 0 | Yield). SAS statistical software was used to determine the model parameters and significant 
effects by different selection methods. Variables can be added or dropped manually to arrive at a 
satisfactory model. 

In order to determine which model most accurately represents the data, various test statistics can be 
examined. Parameter estimates, standard error of the estimate, p-value, odds ratio, and R-squared. P-value 
indicates the confidence level, where p<0.05 indicates a 95% confidence level. Slope parameters in 
exponential relationship can be interpreted through odds ratio of the parameter. For continuous variables, a 
one-unit increase in the variable results in an eβ increase in odds of the response variable. For binary 
explanatory variable the odds ratio is interpreted as increase in odds of response from when variable 
increases from levels 0 to 1. Odds ratio is increase in likelihood of response for variable assuming all other 
variables are fixed. R-square test statistic describes amount of variability in data that is explained by the 
model. Higher R2 value indicates better model fit, but the statistic is inflated with addition of more variables. 
Adjusted R2 penalizes the model for inclusion of additional variables and is a better measure for models 
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with many independent variables. Max-rescaled R2 statistic divides generalized R2 by upper bound R2 
estimate to achieve statistic that ranges all the way from 0 to 1. 

Simulation Modeling Approach 
The pedestrian-vehicle interaction event sequence is depicted in Figure 1. In this chart and in subsequent 

charts in the document, the decisions which use basic physics or field observations are shown as diamonds, 
while models developed to describe decision making or reactions by drivers or pedestrians are represented 
as rectangles. 

Figure 1 shows the process flow for vehicles approaching a midblock crosswalk, which begins once a 
vehicle is close enough to the crosswalk to identify a pedestrian waiting to cross, and ends once the vehicle 
passes through the crosswalk. In cases where the required deceleration rate (breaking) to stop at the 
crosswalk is larger than a maximum deceleration rate feasibly achieved by any car, future pedestrian arrivals 
are ignored  (represented as “Required Decel > Max Decel”). The yielding decision described in the 
flowchart is limited to the lead vehicle in the platoon. The vehicles following a lead vehicle in the platoon 
would have no other choice but to stop once the lead vehicle in front of them has stopped to yield to a 
pedestrian. On the other hand, if the lead vehicle in the platoon decided not to yield to the pedestrians, field 
observations have shown that the propensity of a following vehicle yielding is low. It is important to note 
that once the yielding decision is made by the model (for the approaching driver) it is final and will not be 
revised or reconsidered in subsequent steps of the simulation.  
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Figure 1: Vehicle Process Flow Approaching Midblock Crosswalk 

Figure 2 shows the proposed process flow for a pedestrian crossing a single lane midblock crosswalk. 
Pedestrians either cross in a gap in traffic or in front of a yielding vehicle. If the pedestrian crosses in a gap, 
the gap or lag should be long enough to provide enough crossing time for the pedestrians (crossable lag or 
gap). A lag is defined as the time between the pedestrian arrival time at the crosswalk and the arrival of the 
first vehicle. A gap is defined as the time between two consecutive vehicles crossing the crosswalk.  

Overall, two types of crossing models are required, the process of accepting a gap or lag and the process 
of accepting a yield. While the first model is described in detail in this report, it is assumed that pedestrians 
will accept all yields by vehicles.  
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Figure 2: Pedestrian Process Flow for Single Lane Midblock Crossing 

Due to multiple lanes of traffic, the pedestrian crossing decision making process is more complicated 
at multilane midblock crosswalks without a median pedestrian refuge, where pedestrians must identify a 
yield or acceptable gap in all lanes and both directions of traffic before leaving the sidewalk. With a refuge 
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present, the pedestrian may cross in two stages and must identify a yield or acceptable gap in all lanes for 
a given direction before leaving the sidewalk or median. This project focuses on two-lane crossings with 
and without a pedestrian refuge in the median. For a crossing with refuge, it is assumed that the pedestrian 
makes the decision for crossing one direction of travel at a time. Figure 3 shows the pedestrian process flow 
for a two-lane midblock crossing without a pedestrian refuge in the median, while Figure 4 provides the 
process flow when a median refuge is present. 

 
Figure 3: Pedestrian Process Flow for Two Lane Midblock Crossing without Median Refuge 
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Figure 4: Pedestrian Process Flow for Two Lane Midblock Crossing with Median Refuge 

The modeling approach developed is conveniently adaptable for many other geometric layouts and 
crossing types.  More discussion on other implications of the models is provided in Chapter 7. 
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CHAPTER 4: DATA COLLECTION 

A scan of relevant literature identified several research efforts that aimed at studying driver attitudes or 
pedestrian crossing behaviors. For obtaining data in such studies, three different data collection techniques 
have been adopted, namely observational, instrumented vehicle, and driving/pedestrian simulator 
approaches.  

Observational studies are the most traditional method employed in the collection of empirical driving 
and pedestrian behavior data. They can be used to obtain data from attributes that are fixed (such as vehicle 
type, pedestrian characteristics, geometric characteristics, etc.), those that change dynamically (e.g., vehicle 
speeds, pedestrian speeds, distance headways, traffic signal indications, etc.) as well as to record qualitative 
observations (such as driver or pedestrian distraction). Observational data are typically obtained from 
trained observers with the help of tally sheets, count boards, video surveillance equipment, and radar 
detection devices.  

Instrumented vehicles, on the other hand, permit quantitative assessment of driver performance in the 
field, under actual road conditions. Instrumentation in modern vehicles, including access to the on-board 
diagnostic (OBD) system, makes it possible to obtain information from the driver's own automobile, 
providing opportunities to study in depth driver strategy, vehicle usage, upkeep, drive lengths, route 
choices, and decision-making (Rizzo et al., 2002). The instrumentation enables researchers to record driver 
characteristics and vehicle operational parameters. Driver characteristics may include, among others, 
galvanic skin response, heart rate, and muscle activity. Previous research has used instrumented vehicle 
observations to develop lane changing models based on driver behavior (Sun and Elefteriadou 2010 & 
2012), as well as freeway merging models (Kondyli and Elefteriadou 2012).  Observations recorded include 
free flow speed, lane change frequency, and other driver actions.  Examples of vehicle operating 
characteristics that can be gathered using an instrumented vehicle include steering motion, braking actions, 
speed, distance and triaxial accelerations (Helander and Hagvall, 1976). 

Laboratory simulators can be also employed to assess behavior in response to synthetic reality. Driving 
simulators make it possible to observe driver behavior in controlled environments without the risk of driving 
on the road. They offer a cost-effective alternative to real world naturalistic studies and allow for 
independent variables to be systematically manipulated so that driver behavior can be measured precisely 
and safely (Rizzo et al., 2002). Since their introduction in the 1960s driving simulators have undergone 
many advances in terms of computing, visual display, and vehicle dynamics capabilities (Rudin-Brown et 
al., 2002). Even the lower fidelity simulators are able to collect vast amounts of data, which is one of their 
reported advantages over naturalistic investigative methods (Moroney and Lilienthal, 2009). Typical 
dependent measures of driving performance that are collected in driving simulation research studies include 
vehicle speed, acceleration, braking reaction time, and lane position. Similar to the driving simulators, 
pedestrian simulators also exist that can be used to study pedestrian behavior in controlled environments. 

Additional details on the merits and shortcomings of each approach are available in Appendix A. The 
following sections discuss the details of an observational study, and an instrumented vehicle study that were 
performed in this project in order to supply data required for the study of vehicle-pedestrian interactions at 
midblock pedestrian crossings. 

Observational Study 
The observational study consisted of observation of actual pedestrian crossings and the respective 

driver actions. The benefit of conducting an observational study is that it allowed for direct observation of 
vehicle type, pedestrian type, gap size, pedestrian-vehicle conflicts, etc. An observational study is also 
suitable for gathering data to determine the percentage of driver yielding, average observed speeds, and 
pedestrian delay. 
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Several candidate unsignalized crosswalk locations were visited initially in order to select suitable data 
collection locations. Several midblock locations with varying pedestrian treatments, lane configurations, 
built-up environment, and travel activity from Alabama, Florida, and North Carolina were considered. 
Some sites had little naturally occurring pedestrian interactions with vehicular movements. For obtaining 
pedestrian vehicle interactions at such locations, staged crossings were performed by research members, 
while another member recorded detailed vehicular data. Staged crossings were distinguished from naturally 
occurring pedestrian crossings in the analysis – especially for the purpose of pedestrian gap acceptance, to 
avoid bias resulting from studying the experimenters. The nature of data collection required real time 
gathering of vehicle dynamics, with the majority of other variables extracted from post processing of video-
records.  

Data Collection Methodology 

The research team collected a variety of empirical data on pedestrian-vehicle interaction at each study 
site. The data consisted of two kinds of attributes, namely attributes that were changing dynamically (e.g. 
vehicle speed, vehicle relative distance to the crosswalk), and others that were static descriptors of the 
pedestrian-vehicle interaction event (e.g. vehicle type, pedestrian characteristics). Members of the research 
team met early on, through conference calls and web meetings, in the data collection process to discuss 
these variables and any misunderstandings or disagreements. A data collection manual for consistent 
interpretation of these variables, events, and site locations was prepared and is provided in Appendix B.  

The temporal beginning of an interaction event was defined as follows:  

A pedestrian-driver interaction event commences as a pedestrian arrives in the crosswalk influence 
area (CIA) or waiting location while a driver is on the approach of the crosswalk.  

All interaction variables were coded relative to the above reference point in time, and the methodology 
assumed that the following statements are true:  

 The pedestrian indicated his or her intention to cross at the facility (rather than continuing along 
the sidewalk). 

 The pedestrian was aware of the approaching vehicle and decided whether or not he or she felt 
comfortable to cross the road. 

 The driver was aware of the pedestrian’s intention and had to react in some fashion (make the 
decision to yield or continue through the crosswalk). 

 The observer was aware that an event sequence (action-reaction) was about to take place (from 
video observation) and recorded the attributes of the interaction event. 

The assumptions above were valid if both driver and pedestrian were consciously aware of each other’s 
presence. Clearly, there are cases where that was not true, as driver or pedestrian may be distracted or their 
intentions may not be clear and/or consistent. In an observational study the cognitive awareness of the 
involved parties is not discernible, but can only be presumed from erratic or unexpected behavior. For 
example, a pedestrian may step into the roadway and then retreat quickly realizing that he or she misjudged 
the position of the vehicle. Similarly, a driver may perform an emergency braking maneuver after belatedly 
recognizing the presence of the pedestrian. In the case of a pedestrian retreating, this event was coded as a 
separate event. Speed and other vehicle dynamics were recorded and a note such as “pedestrian pull-back” 
was made. 

From the onset of a pedestrian-driver interaction event, there were three potential outcomes to the 
interaction of the two modes: 

1. Pedestrian GO Decision [GO] – The pedestrian decides that there is sufficient time for a safe 
crossing and steps into the crosswalk. 
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2. Pedestrian NO-GO Decision [NOGO]/ Driver Non-Yield Decision [NY] – The pedestrian decides 
that the time until the expected vehicle arrival time to the crossing point is too short to safely cross 
the facility, i.e. he/she rejects the lag or gap. At the same time, the driver decides that it is either 
physically impossible to yield to the pedestrian, or he/she is unwilling to yield. 

3. Driver Yield Decision [Y] – The approaching driver decelerates and creates a crossing opportunity 
for the pedestrian, which may occur with or without coming to a complete stop. 

The team carried out a three-pronged data collection approach that combined real-time observations by 
a trained observer on a tally sheet, video recording of the crosswalk, and laser speed gun (LIDAR) speed 
measurements of approaching vehicles. The LIDAR was used to record the speed and distance of the 
approaching vehicle once the pedestrian (waiting at the curb or in the crosswalk) entered the view of the 
driver. A video camera was set up on a tripod to capture the pedestrian-vehicle interactions so that the 
researchers could gather additional data at a later point. Researchers made an effort to make themselves and 
the equipment inconspicuous by hiding behind trees, bushes, and poles, or beside parked vehicles, when 
these were available at the site. The researcher taking the speed and distance measurements would read 
these values out loud, so that the interaction could be quickly identified in the video. Figure 5 shows a 
schematic of the data collection set-up.  

 
Figure 5: Field Data Collection Set-Up 

In order to capture all relevant data, the video angle was adjusted to cover events concurrent to the 
interaction, such as the presence of an adjacent yield or multiple pedestrians. As shown in the diagram, the 
video camera angle was wide enough to cover the crosswalk influence area (CIA) or waiting location, and 
the approach to the crosswalk. The LIDAR was positioned so that speed recordings from Lidar were visible 
on the video camera and to the field observer, or alternatively were recorded audibly on the video. This 
experimental setup was retained for controlled experiments for sites with low pedestrian activity. A slight 
delay between trigger pull and response was observed, but this was very minor. Researchers accounted for 
this error by pulling the trigger right before the pedestrian entered the CIA. 

The data collection sheet was used to record data of interest in a consistent manner across the study 
sites. The heading of the data collection sheet provided the date/time, observer(s), distance to crosswalk 
(dist. to CW), intersection, approach, and crossing distance. The entire distance had to be visible in the 
video, so that walking speed may later be calculated using the crossing distance and the crossing time 
(TIME on the data collection sheet). Average speed had to be calculated from unimpeded speeds at each 
location. This could be done by collecting speeds and distances for vehicles where the speed is not affected 
by pedestrians or platoons. These speeds and distances (for a sample of 30 vehicles) were reported on a 
separate sheet of paper or along the edge of the data collection sheet. Table 1 summarizes the data collection 
measurements obtained and used in the modeling effort. 

Additional variables were needed to determine gap acceptance behavior and are summarized in Table 
2. A lag event was defined as occurring between a pedestrian who has just reached the crosswalk and the 
next vehicle to arrive at the crosswalk. A gap event occurred between successive vehicles while a pedestrian 
waits at the crosswalk. These variables did not have values for all observations. While in soft and hard 

Camera
Speed GunCIA
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yields, the driver decided to yield to the pedestrian, for triggered yields, the pedestrian utilized what they 
saw as an acceptable gap size. Crossing events that were listed as gaps under the pedestrian variable CROSS 
have at least one observation. 

Table 1: Data collection measures obtained and used in modeling 

 Factor Description Value 

F
ir

st
 V

eh
ic

le
 V

ar
ia

bl
es

 

SPD The speed of the first vehicle (mph), at the time the pedestrian 
arrives at crosswalk influence area (waiting location), recorded 
from speed gun 

Mph 

DIST The distance from the first vehicle to the researcher recorded from 
the laser speed gun 

Ft 

YIELD Whether the first vehicle yielded and if it was a hard or soft yield No=NY, Soft= 
SY, Hard=HY 

NEAR Whether the vehicle for which speed and distance was recorded 
(first vehicle) was in the lane nearest or farthest from the 
pedestrian 

Near=1, Far=0 

TRIG If the first vehicle yielded, was it triggered (forced) by the 
pedestrian. In other words, if the yield happened before pedestrian 
stepping into the crosswalk (0) or after (1) 

Triggered 
Yield, Yes=1, 
No=0 

STP Whether the first vehicle had already stopped at the time that the 
pedestrian arrived  

Stopped=1 

ADJ Whether there was a yield on the other side of the road (opposite 
direction) or a yield in an adjacent lane (same direction) 

Adj. Yield=1 

PLT If the first vehicle was in a platoon or had a close follower Platoon=1 

LSPLT If the first vehicle was in a platoon or had a close follower and 
was travelling at a speed less than or equal to 15 mph 

Low-speed 
Platoon=1 

HGV First vehicle type: passenger car or heavy vehicle (bus or truck) Heavy 
Vehicle=1 

P
ed

es
tr
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n 

V
ar
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MUP If there were other pedestrians present near the crosswalk; if any 
pedestrian is at either sides of the street or the splitter island and 
intends to cross 

Multiple 
Pedestrian=1 

MED Whether the pedestrian crossed from the median or the curb Median=1, 
Curb=0 

CTRL Whether the crossing pedestrian was controlled (researcher) or 
random (observational study) 

Controlled=1, 
Random=0 

CROSS Whether the pedestrian crossed in a gap or a yield Gap/Yield 
(G/Y) 

IN_CW Whether the pedestrian stopped in the crosswalk or at the curb. 
This variable shows the behavior of the pedestrian. A passive 
pedestrian is defined to wait at the curb for a crossing opportunity 
however an assertive pedestrian is defined to be waiting in the 
crosswalk or walking toward the crosswalk 

Crosswalk=1, 
Curb=0 
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AGE Researcher’s estimate of the pedestrian’s age group Young=1, 
Middle/Oldr=0 

DISTR Whether the pedestrian was distracted by an outside source, such 
as a cell phone 

Distracted, 
Yes=1, No=0 

BUSINESS Researcher’s observation of the pedestrian’s attire or clothing Business=1, 
Casual=0 

FEMALE Pedestrian’s gender Female=1, 
Male=0 

S
it

e 
V

ar
ia

bl
es

 

CAMPUS This variable distinguishes sites on-campus (1) from those off-
campus (0) 

On-Campus=1 

FLORIDA This variable distinguishes sites in the state of Florida (1) from 
those in the other two states (0) 

Florida=1 

NCAROLI
NA 

This variable distinguishes sites in the state of North Carolina (1) 
from those in the other two states (0) 

North 
Carolina=1 

Distance to 
Crosswalk 

The distance from the researcher using the laser speed gun to the 
middle of the crosswalk along the curb. 

Ft 

Crossing 
Distance 

The distance from the curb to a measured location, such as a 
specific white crosswalk marking, a center line, or the opposite 
side of the crosswalk. 

Ft 

O
th

er
 

COUNT If the first vehicle did not yield, how many vehicles went through 
before the pedestrian crossed 

Number 

V
id

eo
 

DIST_DEL Delay between when the speed should have been taken (time 
pedestrian arrives at the waiting location) and actual measurement 

Seconds 

ADJDIST Vehicle position at the time of pedestrian arrival in crosswalk 
influence area measured in feet using a LIDAR speed 
measurement device; ADJDIST is calculated from measured 
distance, speed, distance delay and Distance to Crosswalk; 
ADJDIST=DIST+SPD*1.467*DIST_DEL-Distance to Crosswalk 

Ft 

TTC Time until vehicle would theoretically arrive at the crosswalk; 
TTC is calculated from the measured speed and distance at the 
time pedestrian arrives in the crosswalk influence area; 
TTC=ADJDIST/(SPD*1.467) 

Seconds 

DECEL Deceleration rate necessary to come to a full stop prior to 
crosswalk; DECEL is calculated from measured speed and 
adjusted distance; DECEL=(SPD*SPD)/(2*ADJDIST) 

Ft/s2 

 

Table 2: Additional data collection elements used in determining the gap acceptance behavior 

Factor Description Value 

GO Whether the pedestrian accepted (GO) or rejected (No-GO) a gap/lag 
event. 

GO=1, No-
GO=0 
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LAG Whether the pedestrian event is a lag or gap Lag=1, 
Gap=0 

TIME Time from the pedestrian stepping into the crosswalk to reaching a 
measured location (such as a specific white crosswalk marking, a 
center line, or the opposite side of the crosswalk). This value is used in 
calculating the pedestrian walking speed. 

Seconds 

W_SP Pedestrian walking speed while crossing Ft/s 

OBS Observed lag or gap time, measured with a stopwatch between 
pedestrian and vehicle arrival (lag) or successive vehicles (gap) 

Seconds 

DELAY Time from the pedestrian arriving at the crosswalk influence area 
(waiting location) to stepping into the crosswalk to cross 

Seconds 

Study Site Selection 

The driver yielding behavior and pedestrian gap acceptance may vary significantly at locations with 
varying land use and facility designs. In order to achieve greater heterogeneity in the study, various mid-
block crossing locations with various lane configurations, and demographic elements were selected as study 
sites. Site visits and/or using Google Earth served as a starting point to collect basic information such as 
number of lanes, adjoining land use, average annual daily traffic, other facilities in the vicinity etc. Each 
mid-block location was visited at different times during the day to evaluate whether the site had adequate 
pedestrian and vehicle activity to warrant data collection. A few sites had sparse pedestrian and / or vehicle 
activity and thus were dropped from the initial candidate sites inventory. Sites with more than three lanes 
were avoided because the camera would have to be setup further from the crosswalk to capture the 
interaction. Drivers are forced to reduce their speed when approaching a raised crosswalk, so sites with 
raised crosswalks were not considered. 

A total of 27 sites were selected for data collection and analysis (9 in Alabama, 10 in Florida, and 8 in 
North Carolina). The selected sites included mid-block locations with varying lane configurations, 
pedestrian and vehicular volumes were selected for data collection effort. 11 out of these 27 sites were 
university on-campus locations.  

An example of a study site from North Carolina is depicted in Figure 6. Posted speeds at these locations 
ranged from 15 mph to 40 mph. Single lane and multilane configurations were considered in narrowing the 
final sites for data collection. Some of the sites also had bike lanes present, although bike traffic was 
negligible at these locations. 
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Figure 6: Example of study site and data collection setup 

The complete inventories of data collection sites in Alabama, Florida and North Carolina are provided 
in Table 3, Table 4, and Table 5 respectively. 

 

Table 3: Data collection sites in Alabama 

No. Crosswalk Location City No. of Lanes Description Type 
1 University Blvd. and 

Hackberry Lane 
Tuscaloosa Two Bike lanes On 

2 Richard Arrington Blvd. and 
7th Ave N. 

Birmingham Three (one 
way) 

Curbside Parking Off 

3 Greens Springs Hwy. and 24th 
Ave S. 

Birmingham Three (one 
way) 

Transit stop near 
crosswalk 

Off 

4 10th St. S. and 10th Ave. S. Birmingham Four Left turn lane in each 
direction 

Off 

5 7th Ave. and Campus Dr. (A) Tuscaloosa Two Bike lanes On 
6 7th Ave. and Campus Dr. (B) Tuscaloosa Two Bike lanes On 
7 University Blvd. and Colonial 

Dr. 
Tuscaloosa One (one 

way) 
Bike lane alongside On 

8 Campus Dr. E. and 5th Ave. Tuscaloosa Two Transit stop near 
crosswalk, Bike lanes 

On 

9 Ridge Rd. and Oxmoor Rd. Homewood Two School near crosswalk Off 
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Table 4: Data collection sites in Florida 

No. Crosswalk Location City No. of Lanes Description Type 
1 Gale Lemerand Dr. Gainesville Two Two stage, Flashing 

Ped sign, Bike lanes 
On 

2 Museum Rd. & Fraternity 
Row (EB) 

Gainesville Two Bike lanes On 

3 Museum Rd .& Fraternity 
Row (WB) 

Gainesville Two Bike lanes On 

4 Museum Rd. & Reitz Union 
Dr. 

Gainesville Two Bike lanes, In-road 
sign 

On 

5 Hull Rd. Gainesville Two Bike lanes On 
6 Museum Rd. & SW 13th St. Gainesville Two Two stage, Ped sign, 

Bike lanes 
On 

7 SW 2nd Ave. & SW 8th St. Gainesville Two Two stage, In-road 
sign, On-street parking, 
Bike lanes 

Off 

8 SW 2nd Ave. & SW 3rd St. Gainesville Two Two stage, In-road 
sign, On-street parking, 
Bike lanes 

Off 

9 SE 2nd Ave. & SE 6th St. Gainesville Two On-street parking, Bike 
lanes 

Off 

10 SW 2nd Ave. & SW 1st St. Gainesville Two Two stage, In-road 
sign, On-street parking, 
Bike lanes 

Off 

Table 5: Data collection sites in North Carolina 

No. Crosswalk Location City No. of Lanes Description Type 

1 Fayetteville at Hargett & 
Martin 

Raleigh Two On-street parking Off 

2 Fayetteville at Morgan & 
Hargett 

Raleigh Two On-street parking Off 

3 Wilmington at Hargett & 
Martin 

Raleigh Two (one 
way) 

On-street parking Off 

4 S. Elm at Washington & 
February 1 

Greensboro Two Two stage, On-street 
parking 

Off 

5 S. Elm at Washington & 
McGee 

Greensboro Two Two stage, On-street 
parking 

Off 

6 Dan Allen at Thurman & 
Cates 

Raleigh Two Access gate On 

7 Sullivan at Dan Allen & 
Varsity 

Raleigh Two In-road sign, Bus stop On 

8 Main Campus at Research & 
Campus Shore 

Raleigh Two On-street parking On 
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In-Vehicle Study 

Data Collection Overview 

The instrumented vehicle (in-vehicle) data collection was geared at providing inputs for driver 
behavior and vehicle dynamics, which can be used for simulating pedestrian-driver interactions at 
crossing locations, as well as understanding driver attitudes in the interaction process.  The data collection 
approach is based on previous studies of important factors that impact driver yielding and pedestrian 
crossing behavior, such as vehicle speed, pedestrian characteristics, and other related elements.  A total of 
15 participants were involved in this experiment and their behaviors in terms of pedestrian interaction at 
crosswalks were recorded to address the need. The detailed information on participant’s demographic 
characteristics and driving attitude can be found in Appendix F. 

Participants and Driving Routes 

In this study, 15 participants were recruited through advertisements publicized on the Craigslist 
website or posted around the Gainesville area, Florida (IRB form is attached in Appendix G).  The 
participants were selected based on age, gender, driving experience, occupation, vehicle ownership 
through a prescreening questionnaire. Three criteria for participant recruitment were set: (1) must be a 
regular driver with driving experience no less than one year; (2) must be at least 25 years old; (3) must 
have a valid driver license. The criteria were set to make sure the subjects were adequately skilled drivers, 
and that the pool of subjects was reasonably diverse.  

Two different routes on the campus of the University of Florida were selected for the in-vehicle study. 
These locations include approximately 18 midblock crossings each. Figure 7 provides the route maps for 
two routes, and information about each route is shown in Table 6 and Appendix C.  

 
Table 6: Route Information for In-Vehicle Study 

 Total Length 
# Midblock 
Crossings 

# Signal Crossings 
Total Duration 

TR LT RT 
Route #1 4.7 mile 17 4 2 1 16 min 
Route #2 2.8 mile 19 2 2 3 20 min 
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 (a). Route #1 (b). Route #2 
Figure 7: In-Vehicle Study Route Maps 

Data Collection Process for Each Participant 

Each participant was asked to meet our researchers at a pre-specified point and time.  The researchers 
provided each subject with the informed consent form, pre-driving survey and the route maps. After a test 
drive, the subject began to drive along the two routes.  After the completion of each route, he/she was asked 
to stop and complete a questionnaire regarding the driving actions throughout the route. Questions related 
to lane-changing, yielding, and actions around pedestrian walkways, bikeways, and transit vehicles. After 
the completion of all routes, a final questionnaire was used to summarize drivers’ experiences during the 
entire experiment. The data collection was approximately 45-60 minutes for each participant, including a 
5-minute discussion after the completion of each route.  

Collected Data and Obtained Models 

During the data collection, vehicle speed throughout the network, driver’s car-following and lane 
changing behaviors, as well as the yielding and braking behaviors at crosswalks were all recorded by the 
cameras installed in the vehicle or by the researchers taking notes. Meanwhile, the driving attitudes were 
extracted from the questionnaires. The collected data were summarized as follows: 

 Driver speed, acceleration, and vehicle trajectory throughout the experiment, 
 Pedestrian characteristics, pedestrian presence at each crosswalk and the corresponding driver 

behavior, 
 Traffic flow condition and the road environment, and 
 Participants’ demographic characteristics, general driving attitudes, urban campus issues and 

specific pedestrian interaction issues 
Several sub-models used in simulation implementation were developed based on the obtained information 
from in-vehicle study, such as the models of driver decision point, and yield dynamics (results are 
presented in Chapter 5). Moreover, driver types and their aggressiveness, as well as their overall behavior 
along the test routes could be observed and further analyzed. 
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CHAPTER 5: EMPIRICAL MODELS 

This chapter presents the modeling results after analyzing all collected data. The chapter first presents 
the yield modeling results, followed by gap acceptance data and model results. Finally, the chapter presents 
various other algorithms captured from the in-vehicle study.  

Yield Models 

Descriptive Statistics 

Analysis of the data began with descriptive statistics of the variables, which led to a better 
understanding for the data trends and variability. The mean and standard deviation for all variables used in 
the process of yield modeling were calculated and provided in Table 7 and Table 8. 

The values are provided for the overall data set, but are also broken into separate columns for different 
data sets based on location (on-campus or off-campus and Florida, Alabama, or North Carolina), as well as 
response type (yield or non-yield).  

There were initially 1,178 observations to analyze, but certain observations were deleted when the 
decision to yield was made prior to the pedestrian arriving or the decision was forced by the pedestrian, 
which is defined as a “triggered yield”. Consequently, the sample size dropped to 975 observations for the 
modeling process.  

For binary variables, the mean is equivalent to the rate at which this variable was observed. Therefore, 
for the response variables (HY, SY, and NY), the means are the observed yielding rates. The overall 
yielding rate was 53.3% (the sum of the HY and SY means). Higher yielding rates were seen at on-campus 
locations and at sites in Florida. Few events are associated with heavy vehicles (HGV, 5.4%), distracted 
pedestrians (DISTR, 1.2%), and pedestrians in business attire (BUSINESS, 5.1%). 8.6% of pedestrians 
were observed to “trigger” a yield (TRIG) by stepping into the roadway and 7.0% of drivers were stopped 
prior to the pedestrian arriving at the curb (STP). Observations associated with a triggered yield or a vehicle 
already stopped at the crosswalk were removed prior to any modeling efforts, since these drivers did not 
make the decision to yield for that particular observation.  

The average observed speed (SPD) at the sites is 20.6 mph, with higher speeds being seen at off-campus 
locations, Alabama sites, and for non-yield events. Data showed that 63.2% of observations occurred when 
the pedestrian was on the near side of the vehicle (NEAR). 24.6% of the observed pedestrian crossings 
events occurred when pedestrians were traveling in a group of two or more people (MUP). 26.9% of yields 
occurred when the driver was part of a low-speed platoon of 15 MPH and lower (LSPLT). Non-yield events 
were associated with lower time-to-collision (TTC) and higher necessary deceleration rates (DECEL). 
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Table 7: Descriptive Statistics for the Yielding Study – Binary Variables 

  All Data CAMPUS STATE Response 

      On Off Florida Alabama N. Carolina Yields Non-Yields 

 Variable Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

Sample Size* 1178   599   579   442   382   354   628   550   
Response 
Variables                                
 Hard Yield 0.237 0.425 0.367 0.482 0.102 0.303 0.473 0.500 0.126 0.332 0.062 0.242 0.444 0.497 0.000 0.000 
 Soft Yield 0.296 0.457 0.369 0.483 0.221 0.415 0.362 0.481 0.233 0.423 0.282 0.451 0.556 0.497 0.000 0.000 
  Non-Yield 0.467 0.499 0.264 0.441 0.677 0.468 0.165 0.372 0.641 0.480 0.655 0.476 0.000 0.000 1.000 0.000 
Binary Factors                                

 NEAR 0.632 0.483 0.588 0.493 0.677 0.468 0.586 0.493 0.618 0.487 0.703 0.457 0.597 0.491 0.671 0.470 

 TRIG 0.086 0.280 0.080 0.272 0.092 0.289 0.093 0.290 0.076 0.265 0.088 0.283 0.156 0.363 0.005 0.074 

 STP 0.070 0.255 0.135 0.342 0.002 0.042 0.183 0.387 0.000 0.000 0.003 0.053 0.124 0.330 0.007 0.085 

 ADJ 0.121 0.326 0.177 0.382 0.062 0.242 0.213 0.410 0.055 0.228 0.076 0.266 0.189 0.392 0.042 0.200 

 PLT 0.383 0.486 0.412 0.493 0.352 0.478 0.502 0.501 0.267 0.443 0.359 0.480 0.451 0.498 0.305 0.461 

 LSPLT 0.163 0.370 0.244 0.430 0.079 0.271 0.315 0.465 0.018 0.134 0.130 0.337 0.269 0.444 0.042 0.200 

 HGV 0.054 0.225 0.083 0.277 0.022 0.148 0.059 0.236 0.018 0.134 0.085 0.279 0.059 0.236 0.047 0.212 

 MUP 0.246 0.431 0.372 0.484 0.116 0.320 0.398 0.490 0.128 0.335 0.184 0.388 0.371 0.483 0.104 0.305 

 MED 0.207 0.405 0.275 0.447 0.136 0.344 0.416 0.494 0.118 0.323 0.042 0.202 0.285 0.452 0.118 0.323 

 CTRL 0.547 0.498 0.367 0.482 0.732 0.443 0.507 0.501 0.623 0.485 0.514 0.501 0.441 0.497 0.667 0.472 

 AGE 0.809 0.393 0.928 0.258 0.685 0.465 0.998 0.048 0.534 0.499 0.870 0.337 0.895 0.307 0.711 0.454 

 DISTR 0.012 0.108 0.013 0.115 0.010 0.101 0.000 0.000 0.008 0.088 0.031 0.174 0.014 0.119 0.009 0.095 

 BUSINESS 0.051 0.220 0.020 0.140 0.083 0.276 0.000 0.000 0.037 0.188 0.130 0.337 0.040 0.196 0.064 0.244 

 FEMALE 0.423 0.494 0.367 0.482 0.481 0.500 0.397 0.490 0.202 0.402 0.695 0.461 0.455 0.498 0.387 0.488 

 CAMPUS 0.508 0.500 - - - - 0.774 0.419 0.385 0.487 0.311 0.463 0.702 0.458 0.287 0.453 
 FLORIDA 0.375 0.484 0.571 0.495 0.173 0.378 - - - - - - 0.588 0.493 0.133 0.340 
 ALABAMA 0.324 0.468 0.245 0.431 0.406 0.491 - - - - - - 0.218 0.413 0.445 0.497 
  NCAROLINA 0.301 0.459 0.184 0.388 0.421 0.494 - - - - - - 0.194 0.396 0.422 0.494 

*All values found prior to removing observations with SPD=0, STP=1, TRIG=1          
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Table 8: Descriptive Statistics for the Yielding Study – Continuous Variables 

  
All 

Data CAMPUS STATE Response 
 Variable   On Off Florida Alabama N. Carolina Yields Non-Yields 

Sample Size 975 450 509 300 353 322 432 543

Continuous Factors                 
SPD Mean 20.585 18.398 22.461 18.367 24.748 18.090 17.580 22.977
 St. Dev. 7.115 6.192 7.322 6.536 7.629 4.482 5.923 7.082
 Min. 4 4 10 4 10 10 4 5
 Max. 51 40 51 36 51 30.2 44 51
ADJDIST Mean 130.780 138.031 124.565 138.218 129.004 125.797 128.743 132.401
 St. Dev. 69.106 72.729 65.274 63.672 65.155 77.325 61.415 74.678
 Min. 3.370 3.370 3.900 3.370 23.700 3.900 3.370 5.900
 Max. 435.272 435.272 411.100 348.972 411.100 435.272 348.972 435.272
TTC Mean 4.596 5.346 3.952 5.393 3.627 4.915 5.176 4.134
 St. Dev. 2.411 2.630 1.995 2.246 1.619 2.888 2.198 2.475
 Min. 0.230 0.230 0.233 0.230 0.740 0.233 0.230 0.277
 Max. 16.184 16.184 12.157 15.839 10.987 16.184 15.839 16.184
DECEL Mean 2.829 2.547 3.070 3.356 2.891 2.270 2.332 3.224
 St. Dev. 2.832 3.094 2.565 3.520 1.779 2.957 2.259 3.163
 Min. 0.185 0.185 0.325 0.185 0.433 0.211 0.185 0.211

  Max. 38.015 38.015 21.521 38.015 16.118 21.521 31.911 38.015

*All values found AFTER removing certain observations (such as SPD=0, STP=1, TRIG=1) 
 

Data Preparation 

Hard Yield and Soft Yield 

The behavioral models predict discrete decisions by the driver on whether to yield or not. In the case 
of a driver yielding to a pedestrian (or multiple pedestrians), the decision outcome can be a yield or a non-
yield or the yield decision can be broken into a hard or a soft yield. 

Validation 

For each state, one site was removed from the dataset for model validation. There were 49 observations 
each for the validation site in North Carolina and Florida and 43 observations for the Alabama site.  

In preparation for modeling, observations were also removed if the vehicle speed was 0 mph, the 
vehicle was already stopped when pedestrian approached crosswalk (STP=1), or if the yield event was 
triggered (TRIG=1). These were deleted because the driver did not make the decision for that observation, 
they either made the decision for a prior observation or the pedestrian forced the vehicle to yield. The total 
number of observations used in the modeling procedure was 975 (432 Yields and 543 Non-yields). 
Variables collected in the field or from video that did not apply to the driver decision to yield, such as 
pedestrian walking speed, were removed from the dataset. Florida was shown to have the most yielding 
while North Carolina had the least yielding. Based on this, it was decided that dummy variables would be 
created for these two states to capture the effects of these sites, while yielding in Alabama is captured in 
the intercept value.  
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Correlation tables were created throughout the modeling process when variables were added or 
removed from the data set. Many variables were shown to be significantly correlated with the dependent 
variable, as indicated by low p-values. The complete set of correlation tables can be found in Appendix D.   

The following variables show a significant positive correlation with the dependent variable, suggesting 
an increase in yielding with an increase in the variable (or binary variable change from 0 to 1): ADJ, PLT, 
LSPLT, MUP, MED, TTC, AGE, FEMALE, CAMPUS, and FLORIDA.  

The following variables show a significant negative or inverse correlation with the dependent variable, 
suggesting a decrease in yielding with an increase in the variable (or binary variable change from 0 to 1): 
SPD, NEAR, CTRL, DECEL, BUSINESS, and NCAROLINA. The high number of significant correlation 
coefficients shows that the yielding decision relies on several factors, rather than being the result of any 
single variable.  

Only a few of the explanatory variables were intercorrelated. The variables that were intercorrelated 
are not surprising: NEAR to MED, PLT to LSPLT, and MUP to CTRL, for example. ADJDIST, TTC, and 
DECEL are also intercorrelated, which is expected since TTC and DECEL are calculated using the 
ADJDIST. Low sample sizes may show independent variables to be virtually perfect predictors of a certain 
response level. These variables included HGV, DISTR, and BUSINESS. 

Logit Model Development 

In order to create a model to predict the likelihood of a driver yielding to a pedestrian or pedestrians 
on a crossing event, SAS was used to analyze the data collected in Alabama, Florida, and North Carolina 
(except from the 3 sites that were reserved for validation purposes). Various types of models were tested, 
including binary logit, pseudo-nested logit, etc. The team decided to choose binary logit modeling, since it 
best describes the probability of yielding as a function of the variables collected. Binary logit models were 
created, taking into account microscopic traffic parameters related to the pedestrian crossing. In the first 
step of modeling, a correlation table was created to determine if any variables are intercorrelated, either 
with the response variable or with other independent variables. Correlation tables are also used to determine 
if certain variables are negatively or positively correlated with the dependent variable and how strong the 
relationship is. Table 9 below shows one of the correlation tables. 
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Table 9: Correlation Table for Yielding Data 
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All of the variables that are shown to be intercorrelated met experimenter expectations. Adjusted 
distance (ADJDIST), time to contact (TTC), and necessary deceleration rate (DECEL) are intercorrelated, 
which is expected since adjusted distance is used to calculate time to contact and necessary deceleration 
rate. A value of “1” for the low speed platoon variable (LSPLT) was determined from whether the vehicle 
was part of a platoon (PLT = 1) and if the vehicle speed (SPD) was less than or equal to 15 MPH, so it was 
expected that low speed platoon would be correlated with these variables. Vehicles in the lane near the 
pedestrian (NEAR = 1) are negatively correlated with pedestrians crossing from the median (MED = 1). 
This is due to the way the equipment was setup at the sites. Controlled crossings (CTRL = 1) are negatively 
correlated with the presence of multiple pedestrians (MUP = 1), which is reasonable since controlled 
crossings only have multiple pedestrians if an additional pedestrian showed up while the staged pedestrian 
was preparing to cross. 

Most of the variables considered for the models showed significant correlation (p<0.05) to the 
dependent variable. Positive correlation suggests that an increase in yielding results from an increase in the 
value of the variable (or a change from 0 to 1 for binary variables). Negative correlation suggests a decrease 
in yielding from an increase in the value of the variable. ADJ, PLT, LSPLT, MUP, MED, TTC, AGE, 
FEMALE, CAMPUS, and FLORIDA showed positive correlation, while SPD, NEAR, CTRL, DECEL, 
BUSINESS, and NCAROLINA showed negative correlation. 

In the next step, binary logit models were created to predict the likelihood of yielding. Y_NY is a 
binary variable that was created where a yield is represented by “1” and non-yield by “0.” Models for the 
likelihood of yielding will be presented below based on different variable selection processes: 

 Full Model – uses all independent variables regardless of their p-value. 

 Forward selection – successively adds variables to the model at a p<0.05 inclusion threshold. 
This is an automated function in SAS. 

 Backward elimination – starts with a full model and then removes variables starting with the 
highest p-value, until all remaining variables are at p<0.05.  

 Manual selection – a custom model that is informed by the first three modeling results, but 
considers practical significance and feasibility of implementing variables in simulation (as 
opposed to just being motivated by statistical fit). 

In addition to these binary models, additional models were created to show the likelihood of hard 
yielding rather than soft yielding. These models may be interpreted as a step-wise nested binary logit, where 
the first level (Y vs. NY) is predicted through one of the models above, and the second level (HY vs. SY) 
predicted from this model. A total of 432 observations (152 hard yields and 280 soft yields) were used for 
the hard yielding model. 

Several different modeling approaches were applied that differ in number and type of parameters that 
are considered. Only 10 of the 975 observations involved a distracted pedestrian (DISTR = 1), so this 
variable was eliminated due to small sample size. Triggered yields, previously stopped vehicles, heavy 
vehicles, and pedestrians in business attire also showed small sample sizes, but were all greater than 5% of 
the data. The full model was used to identify the variables which were significant and how significant those 
variables were when compared to the other variables. Models formed through forward selection and 
backward elimination processes are expected to show the same variables to be significant and insignificant. 
Sometimes these processes produce slightly different results – especially when independent variables are 
intercorrelated. The table below shows a brief description of the models that were created in an effort to 
select a final model and a universal model (final model without state variables). Detailed modeling results 
are shown in Appendix D.  
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Table 10: Yield Model Summary 

 Selection Notes R2 Max-Resc. R2

Y-1 Full Excluding campus and state variables 0.2591 0.3470 
Y-2 Forward* Excluding campus and state variables 0.2553 0.3418 
Y-3 Manual All but TTC variable removed 0.2525 0.3382 
Y-4 Manual All but SPD and ADJDIST removed 0.1925 0.2578 
Y-5 Forward* North Carolina data only 0.2272 0.3248 
Y-6 Forward* Florida data only 0.1834 0.2779 
Y-7 Forward* Alabama data only 0.2916 0.4117 
Y-8 Forward On-campus data only 0.2246 0.3105 
Y-8B Backward On-campus data only 0.2474 0.3420 
Y-9 Forward Off-campus data only 0.1424 0.2090 
Y-9B Backward Off-campus data only 0.1543 0.2264 
Y-10 Full Campus and state variables added (FL and AL) 0.3648 0.4885 
Y-11 Forward Campus and state variables added (FL and AL) 0.3582 0.4797 
Y-11B Backward Campus and state variables added (FL and AL) 0.3586 0.4802 
Y-12 Full LSPLT variable added 0.3691 0.4943 
Y-13 Forward LSPLT variable added 0.3613 0.4838 
Y-14 Full State variables changed to AL and NC 0.3691 0.4943 
Y-15 Forward State variables changed to AL and NC 0.3613 0.4838 
Y-16 Manual Y-2 with age switched out for campus 0.2967 0.3973 
Y-17 Full State variables changed to FL and NC 0.3691 0.4943 
Y-18 Forward State variables changed to FL and NC 0.3613 0.4838 
Y-19 Manual Final Driver Yielding Model 0.3582 0.4797 
Y-20 Manual Universal Model 0.2680 0.3589 
HY-1 Forward Excluding campus and state variables 0.2361 0.3249 
HY-2 Forward Campus and state variables added (FL and AL) 0.2577 0.3519 
HY-3 Forward LSPLT variable added (was not significant) 0.2577 0.3519 
HY-4 Forward State variables changed to AL and NC 0.2507 0.3449 
HY-5 Forward State variables changed to FL and NC 0.2507 0.3449 

*Backward elimination showed same results as forward selection 

For manual selection, variables were selected manually for use in the models. The variable selection 
was motivated by the ability to implement this model into a microsimulation environment, which is the 
primary objective of this project. The team therefore explored different model combinations that could 
more readily be implemented. In the first attempt at manual selection (Y-3), only the SPD and ADJDIST 
variables were used, and the interaction variable TTC was excluded. The team removed SPD and ADJDIST 
and instead only used the TTC variable for the next manual selection model (Y-4). Models Y-5, Y-6, and 
Y-7 were created from the datasets for each state to determine if behavior is different for each state. Since 
the models showed different variables to be significant, it was determined that dummy variables should be 
created for two of the states and have the third state represented in the intercept value.  

For the final models, dummy variables were created for Florida and North Carolina, while Alabama 
was represented in the intercept value. Alabama was chosen to be represented in the intercept because it 
showed the middle level of yielding for the three states, with Florida having greater yielding and North 
Carolina having less yielding. A campus variable was included in model development since the on-campus 
data and off-campus data showed different variables to be significant in models (Y-8 and Y-9). A low-
speed platoon variable was added (Y-12) to separate the effect of queued vehicles and other slower vehicle 
platoons from high-speed platoons. In Y-16 it was seen that CAMPUS had a more significant effect on 
driver yielding than AGE. Due to the low sample size of older pedestrians, it was decided that AGE should 
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not be used in further model development. 

Model Y-19, the final driver yielding model, uses nine explanatory variables and has R2 value 0.3582 
(max-rescaled R2 is 0.4797). The variables chosen for this model were all significant at p<0.05. Increased 
speed (SPD) was seen to reduce the likelihood of yielding, as did increased required deceleration rate 
(DECEL). Presence of adjacent yields (ADJ), low speed platoons (LSPLT), presence of multiple 
pedestrians (MUP), and female pedestrians (FEMALE) were seen to increase the likelihood of yielding. 
Drivers are more likely to yield to pedestrians on-campus (CAMPUS). The coefficient estimates for Florida 
and North Carolina show that drivers are more likely to yield in Florida and less likely to yield in North 
Carolina than drivers in Alabama. The model is shown below in Equation 16. 

logit P Y 1 	 	0.8344‒ 0.0894SPD 0.9448ADJ
0.9833LSPLT 0.7348MUP‒0.1369DECEL	 0.8247FEMALE
1.0476CAMPUS 1.4245FLORIDA‒1.2034NCAROLINA   

Equation 16 

Model Y-20, the universal driver yielding model, uses seven explanatory variables (same variables as 
Y-19) and has R2 value 0.2680 with max-rescaled R2 value 0.3589. The state variables were removed from 
the model to provide a model that can apply outside of the three states where data was collected.  All 
variables were significant at p<0.25.  The only variable that was not significant at p<0.05 were DECEL.  
This variable was kept so that the two models would be consistent.  The model is shown below in Equation 
17.  

logit P Y 1 	 	0.1765‒ 0.0758SPD 1.1365ADJ
0.9066LSPLT 0.7171MUP	‒ 0.0328DECEL 0.3765FEMALE
1.532CAMPUS   

Equation 17 

In addition to the yield model prediction, nested logit models were used to predict the likelihood of 
hard yielding given that a yield occurred. These models represent two-stage binary logit models with the 
first stage consistent with the initial binary logit model. The second level predicts likelihood that driver 
performs hard yield versus baseline soft yield, given that the first level of the nested logit predicts a yield. 
The overall probability of a driver hard yielding can be calculated by multiplying the two probability 
functions. Soft yielding probability correspondingly is likelihood of a yield multiplied by one minus 
probability of hard yield.  

Hard yielding models are created from the subset of observations where YIELD = 1. HY-5, the final 
hard yield model, uses six explanatory variables and has R2 value 0.2507 (max-rescaled R2 is 0.3449). All 
variables used in this model were significant at p<0.05. Longer distances from the crosswalk (ADJDIST) 
and being in the lane closest to the pedestrian (NEAR) decreases the chance of a driver deciding to hard 
yield. This is likely because drivers who are further away from the pedestrian have time to react with a soft 
yield. Drivers are more likely to hard yield at Florida sites than North Carolina sites. Adjacent yields (ADJ), 
presence of multiple pedestrians (MUP), and higher required deceleration rates (DECEL) increase the 
chance that a driver will hard yield. If the deceleration rate required to yield is higher, then it is reasonable 
that the chance of hard yielding is increased. The model is shown below in Equation 18 

logit P	 HY 1	 0.3699 0.0134ADJDIST 0.7114NEAR 0.8860ADJ
1.3643MUP 0.2865DECEL 0.9443NCAROLINA  

Equation 18 

Comparison between Candidate Yield Models  
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It is seen that the R2 and max-rescaled R2 values drop when going from the final driver yielding model 
with state variables (Y-19) to the universal model (Y-20). R2 drops from 0.3582 to 0.2680, while max-
rescaled R2 value drops from 0.4797 to 0.3589. The ADJ, LSPLT, and MUP variables are more significant 
in Y-20. This is likely due to the removal of the other site-specific variables of FLORIDA and 
NCAROLINA. A few variables drop in significance, but they remain significant at p<0.25. The driver hard 
yield decision model (HY-5) has an R2 value of 0.2507 and a max-rescaled R2 value of 0.3449. These values 
are similar to those for the universal driver yielding model (Y-20). All models are fairly comparable based 
on these model fit statistics. Many of the variables that were shown to be significant in the driver yielding 
decision were also shown to be significant in the decision to hard yield or soft yield. The R2 values may 
seem low, but practical significance for model selection is more important than the overall model fit.  The 
final model results are summarized in Table 11. 

Table 11: Results of Logistic Regression for Driver Yielding 

 Y-19 Y-20 HY-5 
  Parameter Pr > Chi Sq Parameter Pr > Chi Sq Parameter Pr > Chi Sq 

Intercept 0.8344 0.0501 0.1765 0.623 0.3699 0.3957 
SPD -0.0894 < 0.0001 -0.0758 < 0.0001 --- --- 

ADJDIST --- --- --- --- -0.0134 < 0.0001 
NEAR --- --- --- --- -0.7114 0.0032 
ADJ 0.9448 0.0041 1.1365 0.0001 0.8860 0.0064 
PLT --- --- --- --- --- --- 

LSPLT 0.9833 0.0036 0.9066 0.0033 --- --- 
HGV --- --- --- --- --- --- 
MUP 0.7348 0.0013 0.7171 0.0006 1.3643 < 0.0001 
MED --- --- --- --- --- --- 
CTRL --- --- --- --- --- --- 
TTC --- --- --- --- --- --- 

DECEL -0.1369 0.0005 -0.0328 0.2371 0.2865 0.0005 
AGE --- --- --- --- --- --- 

BUSINESS --- --- --- --- --- --- 
FEMALE 0.8247 < 0.0001 0.3765 0.0206 --- --- 
CAMPUS 1.0476 < 0.0001 1.532 < 0.0001 --- --- 
FLORIDA 1.4245 < 0.0001 N/A N/A --- --- 

NCAROLINA -1.2034 < 0.0001 N/A N/A -0.9443 0.0054 
           

R2 0.3582 0.2680 0.2507 
Max Rescaled R2 0.4797 0.3589 0.3449 

 
An increase of 1 mph in speed reduces the odds of yielding 0.91 times for the first model and 0.93 

times for the universal model. The estimated odds of a yield occurring if there is an adjacent yield is 2.57 
times the odds of an event without an adjacent yield for Y-19 and 3.12 for Y-20. The effect on the decision 
to hard yield is similar, with an increase of 2.42 times. The odds of yielding in relation to each variable was 
similar for Y-19 and Y-20 for most of the variables. The largest difference was seen for CAMPUS, with 
an increase in odds of 2.85 for Y-19 and 4.63 for Y-20. The presence of multiple pedestrians has a much 
greater effect on the decision to hard yield (3.91 times) than it does on the overall decision to yield (2.09 
for Y-19 and 2.05 for Y-20). Odds in yielding are reduced 0.87 times for Y-19 and 0.97 times for Y-20 for 
each additional 1 ft/sec2 in necessary deceleration rate, while the odds of hard yielding are increased 1.33 
times in HY-5. The odds of a driver yielding are increased 2.85 times for Y-19 and 4.63 times for Y-20.  
Figure 8 below shows that the chance of a driver yielding in Y-20, the universal model, is greatest when 
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there is an adjacent yield and multiple pedestrians are present (all other variables set to zero) and that 
chance of yielding decreases as speed increases.  The same is true for Y-19. 

 
Figure 8: Effect of ADJ, MUP, and SPD on Yield Probability 

Validation 

The validation dataset was composed from one site per state that was not used in model development. 
After removing observations where the driver was previously stopped or the yield was triggered by the 
pedestrian, 127 observations remained in the validation dataset. Yield (and hard yield) probabilities were 
calculated for each observation from the models and plotted against the observed driver decision. For the 
hard-yielding model validation, non-yields were given the value of 0.  The predicted probability of a hard 
yield is the probability of yielding multiplied by the probability of hard yielding.  The plots for both yielding 
models (Y-19 and Y-20) are provided in Figure 9 below.  Plots for the nested hard yielding model are 
shown in Figure 10 below using both driver yielding models.  Observations are color-coded by state, with 
Florida represented by green, Alabama by red, and North Carolina by blue. 
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Figure 9: Validation Plots for Yield Models 

      
Figure 10: Hard Yielding Validation Plots 

Y-19 showed 53.3% of drivers yielding and Y-20 showed 52.0% of drivers yielding. The data showed 
that 59.8% of drivers decided to yield. The results for HY-5 with Y-19 showed 10.9% of drivers deciding 
to hard yield, while HY-5 with Y-20 showed 19.1% and the data showed 14.2% of drivers deciding to hard 
yield. Data showed 20.9% of observations at the North Carolina validation site to be hard yields, while 
only 2.4% of the observations at the Alabama site were hard yields. The model was not as accurate at 
predicting hard yield probabilities for individual states, but this may have been due to the large variation 
in the datasets. Simulation will also be used to validate these models. 
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Gap Models 

Descriptive Statistics 

A total of 1,246 pedestrian crossings in gaps were recorded at 27 study sites spanning over the three 
participating states (Alabama, Florida, and North Carolina). Of these events, 339 gaps were accepted by 
the crossing pedestrian and the remaining 907 gaps were rejected. An individual site from each state (UF2, 
AL7, and NC2) was set aside for validation of analytical models obtained from rest of observed data.  

The study builds on the empirical behavior modeling framework for mixed-priority pedestrian vehicle 
interaction developed by Schroeder et al. (2011). Vehicle arrival events were distinguished into gaps and 
lags. As mentioned earlier, gap describes the time elapsed between consecutive vehicle events with 
reference to start / end of crosswalk. Similarly, a lag corresponds to the time elapsed between pedestrian’s 
arrival at the crosswalk and next vehicle event.  

Owing to the varying vehicular and pedestrian activity across different study sites, the number of gap 
events recorded for each one of the individual sites was different in number. Table 12 below indicates the 
number of gap and lag events, and the accepted and rejected gap / lag by each site.  

Table 12: Summary of Gap Data 

SITE Lags and Gaps by 
Individual Site 

Accepted and 
Rejected Gaps by 

Individual Site 

Accepted and 
Rejected Lags by 

Individual Site 

Gap Lag Total Rejected Accepted Rejected Accepted

AL1 1 7 8 0 1 0 7 

AL2 104 79 183 74 30 60 19 

AL3 51 11 62 41 10 10 1 

AL4 172 44 216 151 21 44 0 

AL5 1 21 22 1 0 17 4 

AL6 8 22 30 4 4 16 6 

AL8 19 26 45 14 5 21 5 

AL9 82 66 148 81 1 59 7 

FL1 7 29 36 5 0 12 5 

FL3 6 9 15 64 19 51 9 

FL4 3 2 5 20 12 51 1 

FL5 2 1 3 2 3 9 31 

FL6 9 7 16 0 1 5 9 

FL7 2 8 10 1 1 3 13 

FL8 9 9 18 1 6 5 24 

FL9 13 16 29 4 12 14 5 

FL10 16 18 34 15 10 7 7 

NC1 5 17 22 4 2 3 6 

NC3 25 14 39 1 2 2 0 

NC4 83 60 143 1 1 1 0 

NC5 32 52 84 2 7 7 0 
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NC6 5 40 45 1 1 1 7 

NC7 1 14 15 6 3 3 6 

NC8 2 16 18 0 13 13 3 

Total 658 588 1246 493 165 414 175 
 

The study sites provide heterogeneity in assessing pedestrian gap outcomes in relation to different land 
use (i.e., off-campus versus on-campus), facility configuration (number of lanes, presence of refuge island), 
and pedestrian characteristics. A few sites witnessed sparse vehicular and/or pedestrian activity. To 
augment observational data in such sites staged crossings were undertaken. Of the data used in the analysis, 
31.6% are based on non-controlled (natural) pedestrian crossings and the remaining 68.4% are from staged 
crossings. 

Close observation of the database revealed that the data comprised of over-representation of gap events 
for greater crosswalk widths. Hence, to overcome this limitation, the observed gap length (OBS) was 
normalized for crosswalk width (CR_WIDTH) and the normalized gap length variable (N_GL) was 
introduced in the gap dataset. 

For ease of integration of behavioral gap acceptance models with the simulation framework in later 
stages of the study, a dataset comprising of single lane crossing events was separated. This distinction was 
based on the existing simulation framework used in the study. Furthermore, non-controlled and staged 
crossings were separated to achieve greater inter-pedestrian independence of events.  

Table 13 provides details on the sample size obtained for detailed analysis datasets. 

Table 13: Gap Data Stratification 

Dataset Sample Size 
Single Lane (Non-Controlled) 153 
Single Lane (Staged)  213 
All Sites (Non-Controlled)  394 
All Sites (Staged) 852 

 

As shown in Table 14, normalized gap lengths for above different segments were grouped into discrete 
percentile bins to compare acceptance and rejection of gaps. 

Table 14: Gap Acceptance Distribution for Study Datasets 

Percent
ile 

Bin 

Single Lane  
(Non-Controlled) 

Single Lane  
(Staged) 

All Sites  
(Non-Controlled) 

All Sites  
(Staged) 

Rejected Accepted Rejected Accepted Rejected Accepted Rejected Accepted
0 0 0 0 0 0 0 0 0 

10 16 0 20 0 33 0 77 0 
25 21 1 74 0 61 0 124 2 
50 23 16 77 5 82 18 193 18 
75 2 36 5 16 30 70 178 34 
90 2 21 1 3 5 55 101 24 
95 1 7 1 5 2 18 16 27 

100 1 6 0 2 2 17 3 39 
 

From Table 14 it can be observed that for normalized gap lengths below the 50th percentile, the number 
of gaps rejected is greater in number. Conversely, for values greater than the 50th percentile, gaps accepted 
are greater in number barring staged events for all sites combined. 
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Gap Acceptance Modeling 

The outcome of a gap acceptance event is binary (Go vs No-Go) in nature. The observed data were 
used to construct probabilistic models, which can aid in predicting gap selection. The logit based binary 
choice model formulation was attempted first as described in Chapter 3. However, due to the nature of 
available data, non-convergence of likelihood maximization was observed. Consequently incorrect 
maximum likelihood estimates were obtained. For overcoming this limitation, the probit model formulation 
was used instead of the logit model with great success. 

The PROC LOGISTIC function in SAS was used to develop model estimates for gap acceptance 
behavior (SAS, 2007). Forward selection and backward elimination strategies were used to assess different 
models for the given data. For same set of data, forward selection and backward elimination strategies 
yielded almost similar results. 

Comparison 

Probit models were developed for all four datasets separately. For datasets comparatively larger in size 
(All sites combined) variables like PLT (lead vehicle not being in platoon), LAG (Pedestrian faces a gap or 
a lag), NEAR (Lead vehicle traveling in a far lane) were found relevant. Vehicle dynamics (Speed, Distance 
from Crosswalk, and Time to Connect) were not included in the model, due to the fact that these variables 
were captured mainly for the first vehicle in the platoon. Similarly, variables such as HGV (Heavy Vehicle), 
MUP (Multiple Pedestrians), and DIST (Distracted) were under-represented in the field data and did not 
make it to final set of models. The final model results are summarized in Table 15. 

Table 15: Results of Logistic Regression for Pedestrian Gap Acceptance 

 Single Lane  
(Non-Controlled) 

Single Lane (Staged) All Sites  
(Non-Controlled) 

All Sites  
(Staged) 

Parameter Pr>Chi Parameter Pr>Chi Parameter Pr>Chi Parameter Pr>Chi 
Intercept -1.8904 <.0001 -3.3283 <.0001 -2.0424 <.0001 -4.0525 <.0001 

N_GL 5.0483 <.0001 5.1946 <.0001 5.3112 <.0001 6.2670 <.0001 
PLT - - - - 0.5543 0.0058 0.5371 <.0001 

LAG (0) -0.7688 0.0081 - - - - 0.2865 0.0337 
GENDER (0) - - - - - - 1.5585 <.0001 

NEAR (0) - - 1.2189 .0143 - - - - 
         

R2 0.5177 0.3814 0.4484 0.3303 
Max 

Rescaled R2 
0.6946 0.6526 0.5595 0.5044 

 

Table 15 presents a set of models along with their explanatory power (expressed by R2, Max Rescaled 
R2). All models show acceptable results, with the single lane models yielding higher R2, Max Rescaled R2). 
It can be observed that the predicted probability of accepting a gap (GO =1) increases with increasing 
normalized gap length (N_GL). This is consistent across all models fitted. For all the models listed above, 
normalized gap length estimate seems consistent in value. For example, when other variables being 
constant, every unit increase in normalized gap length leads to 5.04 times increase in Z score for (GO =1). 

For models comprising of all sites (Non-Controlled and Staged), the variable representing vehicle not 
being in platoon (PLT = 0) affects the acceptance of gap to a lesser extent. The estimate appears consistent 
to both models. 

For single lane (Non-Controlled) events, the model shows that a pedestrian, when faced to accept a gap 
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as opposed to lag, is less likely to accept the gap, considering that other things being constant.  

The absolute fit of these different models can be compared using the max-rescaled R2 criterion. This 
statistic explains the overall variability in the data by the model and it serves as counterpart similar to R2 in 
linear regression. Generally, the greater the max rescaled R2, the better the explanatory power of the model 
in terms of explaining overall variability. The single lane model drawn from Non-Controlled dataset has a 
max rescaled R2 of 0.69 and shows the best model fit to describe gap-acceptance behavior. Besides, it best 
meets the needs of the simulation modeling platform, thus it is recommended for adoption in the next steps 
of the modeling process. 

The predicted likelihood of a pedestrian accepting a gap (GO =1) can be plotted graphically by applying 
different set of models. For illustration, the probability of accepting a gap for crossing a single lane facility 
based on non-controlled dataset in equation form is: 

Φ-1(Pr (Go = 1)) = -1.8904 + 5.0483N_GL – 0.7688LAG (0)    Equation 19 

Equation 19 given above highlights that for every unit increase in normalized gap length, the likelihood 
of accepting gap given by Z-score increases almost five times. If a vehicle is closely followed by another 
vehicle or is a part of platoon, such a gap reduces the likelihood of gap acceptance as opposed to accepting 
a lag. The negative sign for LAG (0) estimate is indicative of this fact. 

As shown in the Figure 11, using single lane model for a given normalized gap length shows greater 
likelihood of accepting a lag than gap.  For example, for N_GL of 0.5, the probability of accepting a gap is 
44% while the probability of accepting a lag is nearly 74%. 

 
Figure 11: Model Probability for Gap Acceptance (Model: Single Lane, Non-Controlled) 

Validation 

An individual study site from each state was set aside for validating the statistical gap models. The 
validation data set comprised of 39 gap events (3 from UF2 and 36 from NC2). AL7 was the validation site 
from Alabama, but all crossing events were yield events. Final set of four probit models discussed in 
preceding sections were used to predict gap acceptance probability. In validating predictive ability of model 
certain simple conditions were tested: a) Strong Prediction b) Weak Prediction.  These conditions are 
summarized in the Table 16 below.  
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Table 16: Validation Criteria for Predicted Outcomes 

If (GO = 1) and Predicted Probability >= 0.5 , STRONG PREDICTION Denoted By 1 

if (GO = 0) and Predicted Probability <=0.5, STRONG PREDICTION Denoted By 1 

if (GO = 1) and Predicted Probability <=0.5, WEAK PREDICTION Denoted By 0 

if (GO = 0) and Predicted Probability >=0.5, WEAK PREDICTION Denoted By 0 
 

A gap acceptance predicted strongly would result in probabilities in higher order of 0.5 (>0.5). Similarly, 
rejected gaps would be predicted with probabilities lesser of 0.5 (<0.5). The predicted probabilities from 
the probit model were compared to observed gap outcomes from the validation set events. It was found that 
gap acceptance models I through IV exhibited accuracy of 82%, 77%, 77% and 93%, respectively. Figure 
12 through Figure 15 display the predicted probabilities from gap acceptance models I through IV using the 
study validation data set. 

 

Figure 12: Predicted Probabilities; Validation Data Set; Gap Acceptance Model I 
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Figure 13: Predicted Probabilities; Validation Data Set; Gap Acceptance Model II 

 

 

Figure 14: Predicted Probabilities; Validation Data Set; Gap Acceptance Model III 
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Figure 15: Predicted Probabilities; Validation Data Set; Gap Acceptance Model IV 

 

A closer look at prediction accuracy charts below (Figure 16 through Figure 19), highlight the clustering of 
weak predictions (indicated by “w” on the vertical scale).  For Model I, weak predictions are spaced 
approximately at equal length for probabilities 0.18 to 0.75. Similarly small cluster of three weak 
predictions can be observed for probability range 0-0.15 and 0.4-0.55 for Model II. For Model III, weak 
predictions lie in the range of 0.5 to 0.8.  Model IV has the least number of weak predictions, all of them 
lying below probability mark of 0.5. 

 

Figure 16: Validation chart for Gap Acceptance Model I 
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Figure 17: Validation chart for Gap Acceptance Model II 

 

 
 

Figure 18: Validation chart for Gap Acceptance Model III 
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Figure 19: Validation Chart for Gap Acceptance Model IV 

Other Submodels used in Simulation 
Additional measures were obtained and compiled from the pedestrian observation study and the 

instrumented vehicle study, to provide quantitative information related to vehicle movement and driver 
choices. Several sub-models were developed for use in simulating vehicle and pedestrian operations at 
crosswalks. 

Decision Distance Model 

For the purposes of simulation, as each vehicle approaches a crosswalk, they are assumed to have a 
unique decision point. The research team developed a model using data from the observational study, where 
this decision point is the distance between the vehicle and the crosswalk at the time when the observational 
data were collected; in that data collection this point was assumed to be the location where the driver begins 
to react to the presence of the pedestrians. The driver’s decision point model is developed to explain at 
which location to the crosswalks the driver makes a decision to Yield/No-Yield to waiting pedestrians at 
the curb. 

Figure 20 summarizes the decision distances grouped by the vehicle’s Free-Flow-Speed (FFS).As 
shown, the driver’s decision point is a function of their FFS, and also its slope is different for low FFS 
(less than 30 mph) vs high FFS (over 30 mph) For low FFS the vehicle distance remains relatively flat, 
while for higher FFS it increases steadily. Thus these two conditions are discussed separately below. 
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Figure 20: Driver Decision Distance to Crosswalks grouped by FFS 

Low-Speed Group 

Figure 21 shows the decision distance to crosswalks for the low FFS group. A statistical analysis (one-
way Anova with single factor) was conducted to analyze the correlations between FFS groups and within 
groups (<30 mph) as shown in Table 1. Since F < F critical, the group means of these three groups are not 
significantly different, thus they can be combined in one category (low FFS). 

 

Figure 21: Driver Decision Distance to Crosswalks (FFS < 30 mph) 

  

Table 17: Anova of Driver Decision Distance (FFS < 30 mph) 

Source of Variation SS df MS F P-value F crit 

Between Groups 16169.16 2 8084.58 1.869152 0.154962 3.007556 

Within Groups 3291527 761 4325.266    

Total 3307696 763         

 

Based on the findings from Table 17, a combinational dataset of the low-speed group was built and the 
probability density function is shown in Figure 22. The decision points result in a good fit using the Burr 
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Distribution (Log Likelihood of -4197.18.) The cumulative distribution function of Burr Distribution is: 

          Equation 20 

 Where, 

   is the scale parameter,  and  are the shape parameters. These are estimated to be 
214.533, 3.643, and 2.241 in this study. 

Thus, the model predicting the driver decision point for low FFS (FFS < 30 mph) is as follows:  

  . .
.

       Equation 21 

 Where, 

   is a random number from 0 to 1 representing the cumulative probability of the 
decision point. 

 

High-Speed Group 

Another one-way Anova with single factor analysis was conducted to analyze the correlations between 
FFS groups and within groups for the high FFS group (>=30 mph). As shown in Table 18, the group means 
of these three groups are not all the same. A regression analysis is conducted and shown in Figure 23 with 
the dotted line representing the regression model. The R2 is 0.2883, which is low but was considered 
acceptable. Thus, the mean value of the decision point for the high FFS group is determined by the 
following equation: 

  . .        Equation 
22 
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Figure 22: PDF of Driver Decision Points (FFS < 30 mph)



  

49 
 

Empirically-Based Performance Assessment and Simulation of Pedestrian Behavior at 
Unsignalized Crossings 
STRIDE Project Number: 2012-016S 

Table 18: Anova of Driver Decision Distance (FFS >= 30 mph) 

Source of Variation SS df MS F P-value F crit 

Between Groups 490946.5 3 163648.8 46.94657 2.07E-25 2.631175 

Within Groups 1185190 340 3485.853    

Total 1676136 343         

 

 

Figure 23: Driver Decision Distance to Crosswalks (FFS >= 30 mph) 

Next, it is necessary to check the distribution of each of the high FFS groups to be able to better 
replicate the variability within each group. Figure 24 provides the cumulative density function of each FFS 
group, and all of them fit well the Logistic Distribution:  

           Equation 23 

 Where, 

   is scale parameter and  is the location parameters.  is estimated as 34.363, and  is 
estimated by the regression line in Figure 23. 
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Figure 24: CDF of Driver Decision Points (FFS >= 30 mph) 

Thus, the model of driver decision point (FFS >= 30 mph) for each FFS group is an inverse cumulative 
distribution function (quantile function) of the Logistic Distribution with 34.363 and  a linear 
function of FFS:  

  . . ∗ .     Equation 24 

 Where, 

   is a random number from 0 to 1 representing the cumulative probability of decision 
point. 

Soft-Yield Dynamics Model  

Drivers have the choice to Yield or No-Yield when they approach a crosswalk with pedestrian(s) 
waiting at the curb. After they decide to yield, they may choose to do Hard-Yield if they are too close to 
the crosswalk, or choose to perform a Soft-Yield to avoid a complete stop. Regarding Hard-Yields, vehicle 
behavior and deceleration rates are similar to approaching a stop sign or a red indication at a signalized 
intersection. However, regarding Soft Yields, there are currently no models available that provide vehicle 
trajectories. In this study, we assume that Hard-Yields are modeled identically to decelerating at a stop 
sign, and only a Soft-Yield model is developed based on data from the instrumented vehicle study. 

Using GPS data collected from the instrumented vehicle study, vehicle speed profiles were obtained 
for each vehicle-pedestrian interaction observed. In the simulation implementation, the total travel time 
during the vehicle-pedestrian interaction process is assumed to be the time for the pedestrian to cross the 
entire crosswalk plus a safety buffer corresponding to a pedestrian’s body width of 3.5 ft. at the 
pedestrian’s crossing speed. 
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Figure 25: Distance-Speed Profile for Vehicles Approaching Crosswalk with Pedestrians (Soft-Yield) 

 

Figure 26 provides the generalized vehicle distance-speed and time-speed models, developed using 
instrumented vehicle data. In Figure 26, V1 is the vehicle speed at the point of decision making, and V2 is 
the constant coast speed. D1 is the location where vehicle turns to coast to crosswalk, and D2 is the total 
distance vehicle travels (between the point of decision making and the crosswalk). The difference of T1 
and T2 is the vehicle coast time. 
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Figure 26: Generalized Vehicle Distance-Speed and Time-Speed Profiles 

Regression analysis was conducted to generate the model of Soft-Yield deceleration rate using data 
from the in-vehicle study. The results indicate that this vehicle deceleration rate is a function of speed and 
distance at the decision point (R2 = 0.3388):  

 . . ∗ . ∗   Equation 
25 

According to the generalized distance-speed/time-speed profiles, the deceleration time (T1), coast 
time (T2) and coast speed (V2) are as follows: 

      Equation 26 

        Equation 27 
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∗ ∗

 Equation 28 

 
∗ ∗

   Equation 29 

 ∗     Equation 30 

The following chapter describes in more detail how these models were integrated into a micro simulator 
for illustration and testing of the new algorithms.   
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CHAPTER 6: SIMULATION IMPLEMENTATION 

Development of Simulation 
The pedestrian-vehicle interaction simulation was implemented in a new version microsimulation tool 

that is currently under development at the University of Florida under the guidance of Dr. Scott Washburn.  
This project adds pedestrian movement and interaction with vehicles to the existing model that is 
programmed in the C# programming language to demonstrate an application of the statistical interaction 
models in microsimulation.  The simulation developed for this project is a proof of concept, as the models 
of interaction can be applied in any microsimulation that includes vehicles and pedestrians where it is 
possible to modify their behavior, such as VAP in VISSIM. 

Simplifying Assumptions 

Several simplifying assumptions were made in order to create a realistic simulation under the 
constraints of a research application rather than a full commercial simulator. The geometry simulated is 
limited to three configurations that are similar to the majority of data collection sites in the observational 
study. The first configuration is a single one-way lane with a midblock crosswalk in the middle of a 1,600 
ft segment. The second configuration is a two-lane segment with one lane in both directions and no median 
between lanes, also with a midblock crosswalk in the middle of a 1,600 ft segment. The third configuration 
is identical to the second, but includes an 8-foot median between lanes, allowing for a two-stage crossing. 

In the simulation, vehicle behavior during potential vehicle-pedestrian interactions is controlled by a 
crosswalk control point. In other words, vehicles do not directly “observe” the pedestrians, but they receive 
instructions on upcoming actions from the crosswalk control point (yielding, braking, etc.). This control 
point includes information about the nearest vehicle in each lane as well as whether pedestrians are waiting 
to cross and/or currently crossing. In the simulation, driver decisions on yielding are made once the driver 
encounters a waiting pedestrian when they are at or beyond the decision point. Driver decisions are 
permanent unless a safety concern is identified. Additionally, the simulation provides the option for 
pedestrians to reject a yield; however, the default probability for this case is zero. In the case of a rejected 
yield, drivers would react within one time step and continue car-following behavior. When no yielding is 
active the vehicle remains in normal car following behavior. 

Pedestrians are limited to linear movement without interaction between pedestrians. Pedestrians enter 
with a desired walking speed and when able to safely cross, continue walking at their desired speed. This 
desired speed is used when the simulation estimates how long the crosswalk will be occupied in order to 
determine vehicle stop time or soft yield dynamics. Pedestrians that are first in queue at a yield will always 
accept a yield if all lanes are safe to cross. To determine the movement of other queued pedestrians the 
simulation uses the gap acceptance model if the yield type is a soft yield, while all queued pedestrians 
accept hard yields.  This prevents constant re-evaluation of soft yield dynamics for the yielding vehicle so 
that the yield choice model is used once per crosswalk approach. 

Limitations 

Due to the assumptions made, the pedestrian delay only includes waiting time at the edge of the 
crosswalk and not any pedestrian friction effects from increased density in the crosswalk. Friction effects 
as well as pedestrian pooling/queueing could be analyzed if the framework was implemented in a simulation 
environment that included modeling of more detailed pedestrian movement.  Distributions of pedestrian 
characteristics are taken from the data collected in the observational study and are not necessarily 
representative of any one location. 
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Additionally, in the simulation, vehicles make yielding decisions only when they are the closest vehicle 
in their lane to the crosswalk. Following vehicles maintain car following behavior until their leader passes 
through the crosswalk, so queued and platooned vehicles will make yield decisions very close to the 
crosswalk. This approach was used because the observational study only collected information about the 
lead vehicle in platoons and queues. Therefore, the following driver’s ability to decide whether to yield 
prior to their leader passing through the crosswalk cannot be accurately simulated. 

Finally, all of the models and submodels were developed, calibrated, and validated based on our study 
sites. Conditions with different vehicle and pedestrian flows and geometry cannot be accurately simulated. 
A sensitivity analysis is included in this chapter to identify trends especially around boundary conditions. 

Simulation Flow Chart  

The overall simulation flow chart is shown in Figure 27. The simulation is time step-based with a 
current time step of 0.1 seconds. Once the simulation is initialized, all vehicle movements and decisions 
are made prior to pedestrian movements and decisions at each time step. Major submodels developed for 
the simulation are shown in blue, with discussion on the implementation of each submodel in the following 
section.  

In addition to the submodels shown in the flow chart, there are many constraints that are checked 
continuously to ensure that the simulation is realistically recreating the vehicle-pedestrian interaction. In 
order to prevent large vehicle queue spillback in high pedestrian volume situations, a maximum waiting 
time is used. After this time the vehicles are forced to pass through the crosswalk. 
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Figure 27: Simulation Flow Chart 
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Submodel Descriptions 

Pedestrian-Vehicle Conflict Identification 

As each vehicle approaches a crosswalk, the simulation checks at each time step for conflicts with 
currently crossing pedestrians. If the vehicle arrival time to the crosswalk is lower than the time that the 
pedestrian will occupy their lane in the crosswalk, the vehicle is forced to yield in order to avoid the conflict. 
This yield will take precedence over any other vehicle decision in order to model safe vehicle movement. 

Driver Decision Distance 

As each vehicle approaches a crosswalk, they are assigned a unique decision point. The decision point 
is associated with each crosswalk encountered and is unique to each vehicle/crosswalk combination. Two 
models were developed, one for low speeds and one for higher speeds, as discussed in the previous chapter. 

Low-Speed Group: 

Based on the inverse cumulative distribution function of Burr Distribution, we randomly generate a 
double number which is between 0 and 1. That number serves as the random position in the data 
distribution. The driver decision point for the low FFS group is estimated as: 

  . .
.

    Equation 31 

High-Speed Group: 

Similarly, a random number is generated in the simulation and the driver decision point for the high 
FFS group is estimated as: 

  . . ∗ .  Equation 32 

Driver Yield Decision 

The driver yielding model only deals with the yield vs. no-yield option. If a vehicle decides to yield to 
waiting pedestrians, the driver yield check model is used to determine the type of yield between Hard-Yield 
and Soft-Yield. The binary choice model described in the previous chapter is implemented to determine the 
probability of a yield based on the vehicle and pedestrian characteristics. A random number between 0 and 
1 is drawn and if the value is less than or equal to the probability of yielding then a yield is modeled, 
otherwise the vehicle continues in car-following mode.  

Driver Yield Type Check 

After the decision to yield is made, a binary choice model (described in the previous chapter) is used 
to select between a hard yield and a soft yield. A random number between 0 and 1 is drawn and if the value 
is less than or equal to the probability of soft yield, then a soft yield is modeled, otherwise the driver 
performs a hard yield. 

Soft Yield Dynamics 

Once a vehicle decides to soft yield, the trajectory of the soft yield is determined using the model 
described in the previous chapter. This trajectory is used as long as a conflict is not identified. 

 

Hard Yield Dynamics 
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In the simulation, hard yields are modeled identically to stop control. Other models were considered 
but the data collected in the instrumented vehicle study did not indicate that hard yields differed 
significantly from full stops at signals. 

Driver Yield Rejection Response 

Currently the simulation allows for rejected yields for pedestrians, but the default in the simulator is 
that this has a zero probability of occurrence. If this default changes, vehicles would react to a rejected yield 
and return to car following behavior after one time step.  

Driver Wait Time 

In the case of extremely high pedestrian demand, presumably the driver would only remain stopped for 
a finite amount of time. The literature and our data collection did not provide any reasonable estimates for 
this maximum driver wait time. Therefore, in the simulation we used a default value of 60 sec (600 * 0.1 
sec/time step), which was a bit longer than the longest wait we observed in the field. This parameter could 
be used to calibrate queue length for high pedestrian demand scenarios.  

Pedestrian Yield Recognition  

In the simulation, pedestrians “recognize” both hard yields and soft yields when the decision is made 
for the subject pedestrian. Any subsequent pedestrians will accept hard yields and step out. However they 
will not accept soft yields, as the vehicle trajectory has already been determined based on the first 
pedestrian. 

Pedestrian Yield Rejection  

Simulated pedestrians will accept all yields that they recognize under the previously described model. 
One potential extension for this model that may be added in the future is the ability to allow for blind 
pedestrians to only accept hard yields. 

Pedestrian Gap Acceptance 

Pedestrians “observe” gaps at each time step to determine the probability of accepting a gap. The gap 
acceptance model is described in the previous chapter. A random number between 0 and 1 is drawn and if 
the value is less than or equal to the probability of accepting a gap then the lane is safe to cross, otherwise 
the lane is not safe and the pedestrian will not cross. A safe crossing may be identified by either the yield 
recognition model or gap acceptance model in order for the lane to be safe to cross. 

Simulation Output 

Comparison of Simulation Output to Observational Data Set 

A set of test runs of the simulation were made to compare simulation outputs to a dataset from the 
observational study to identify how well the operations were recreated.  Test site UF-5 was selected with 
one lane of traffic in each direction and no median refuge for pedestrians.  The site was modeled during the 
PM peak hour with vehicle flows of 550 veh/hr in the westbound direction and 250 veh/hr in the eastbound 
direction. Pedestrian flows are 250 ped/hr for both approaches of the midblock crosswalk.  The average 
vehicle free flow speed was set to 25 mph, and 800 ft vehicle links were simulated before and after the 
crosswalk. 

A total of 10 runs were made with these flow rates for a 15-minute duration in order to identify the 
average delay to vehicles due to the midblock crosswalk.  Data on vehicle travel time and pedestrian travel 
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time were compared to free flow travel time for each mode to determine the delay for each mode.  Other 
information collected included pedestrian queue lengths, pedestrian characteristics, and vehicle acceleration 
modes.  All other vehicle and pedestrian properties were set to default values, thus information such as 
pedestrian walking speed and gender were not site-specific values, but global values from the observational 
study dataset. 

Vehicle Properties 

Vehicle desired speeds are based on driver types and are distributed around the input link desired speed.  
Additionally, two vehicle classes are modeled, heavy vehicles and passenger cars.  Table 19 shows the 
vehicle properties averaged from the 10 test runs as well as the proportion of vehicles that came to a 
complete stop for pedestrians as a leader. 

 

Table 19: Vehicle Properties 

 Westbound Eastbound 

% Heavy Vehicles 8.9% 7.4% 

Desired Speed (mph) 24.85 24.88 

% Stopped for Peds 28.2% 33.9% 

Pedestrian Properties 

Pedestrian characteristics were modeled based on default global distributions from the observational 
study dataset.  Table 20 compares the simulated pedestrian properties to the observed properties.  Overall, 
pedestrian characteristics from the simulation match the distribution of characteristics seen in the 
observational study dataset for all sites, but Site UF-5 does not match perfectly.  This location is the crossing 
from a parking lot to a university gym, which explains the strong presence of younger pedestrians in casual 
attire. 

 

Table 20: Pedestrian Properties 

 Simulation Site UF-5 All Sites 

 > 30 Years Old 19.7% 0%  21.5%  

 Casual Attire 88.0%  100% 89.6%  

 Male 60.3%  87.8% 60.1% 

Operational Results 

Vehicle and pedestrian delay were calculated for the simulation by subtracting free flow travel time 
from actual travel time.  Comparisons for delays by approach are also appropriate as the different vehicle 
volumes will create different queuing dynamics.  Vehicle delays could not be identified during the 
observational study, but pedestrian delays were recorded and are compared to simulated pedestrian delay. 

Figure 28 shows the distribution of vehicle delays for the scenario sorted by approach direction.  On 
average, the difference in delay is 7.38 seconds, with an average of 7.51 seconds for the westbound 
approach and 7.25 seconds for the eastbound approach.  Many of the smallest delays may be attributed to 
vehicles following a leader with a smaller desired speed. 
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Figure 28: Vehicle Delays 

Figure 29 shows the distribution of pedestrian delays in the observational dataset and in the simulation.  
Overall, there are a higher proportion of delays in the simulation than the full observational dataset and the 
observations at site UF-5. The average delay for the simulation is 0.383 seconds, while it is 1.987 seconds 
for the full observational dataset and 0.257 seconds for site UF-5.  This result indicates that using the global 
default pedestrian parameters results in similar rates of no delay, but the average delay depends much more 
on site-specific flow rates.  One major difference between the simulation and both observed datasets is the 
occurrence of very short delays, i.e., less than one second.  The data collection procedure for the 
observational study used stopwatches to count pedestrian waiting time and was not as accurate as the 
simulation can be.  Overall, the simulation recreates reasonable values of delay for a given set of site-
specific flow rates, but further work is needed to replicate the larger delays observed. 

Sensitivity Analysis 

A preliminary sensitivity analysis was run to identify trends in delay for vehicles and pedestrians based 
on vehicle and pedestrian volumes using the geometry shown in the previous section.  A total of 9 scenarios 
were run with identical vehicle flow rates for each approach and identical pedestrian volumes for each 
crossing direction.  Each combination of 75, 125, and 200 pedestrians per hour per approach and 250, 500, 
and 750 vehicles per hour per approach was modeled for 15 minutes. 

Figure 30 shows the average vehicle delay for each of the 9 scenarios.  A clear pattern of increased 
delay with increased pedestrian volumes is seen, but the differences in vehicle volumes do not have a similar 
trend.  This may be due to the fact that the range of vehicle volumes does not reach close to capacity, while 
a crosswalk with 400 total pedestrians per hour (200 ped/hr each way) is very crowded.  Unlike vehicles, 
no pattern can be found in the average pedestrian delay for the 9 scenarios shown in Figure 31.  Similarly 
to vehicle delays, this may be explained by the low vehicle volumes, with pedestrian volumes not having a 
large effect due to the limitations of the pedestrian model not including pedestrian to pedestrian interaction.  
Further study with a much larger set of scenarios may identify trends in both vehicle and pedestrian delays. 
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Figure 29: Pedestrian Delays 

 

Figure 30: Average Vehicle Delay by Vehicle and Pedestrian Volume 
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Figure 31: Average Pedestrian Delay by Vehicle and Pedestrian Volume 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

The objective of this research was to provide an improved understanding of pedestrian-vehicle 
interaction at mid-block pedestrian crossings and develop methods that can be used in traffic operational 
analysis and microsimulation packages.  Models describing driver yielding and pedestrian gap acceptance 
behavior were developed from field data collected at 27 mid-block pedestrian crossings in three states 
(Alabama, Florida, and North Carolina), encompassing two different types of land use: university campuses 
and downtown areas.  The study included an in-vehicle driver behavior study with 15 drivers performed in 
Florida.  This project implemented algorithms describing vehicle-pedestrian interactions in a micro 
simulator and developed educational modules for dissemination of the research results to students and 
professionals in the southeast and nationwide.  Specific outcomes for this research include: (a) a standalone 
model of pedestrian gap acceptance behavior at unsignalized crossings, (b) a driver yielding behavioral 
model, (c) models describing vehicle dynamics and driver behavior in advance of the crosswalk, and (d) 
prototype algorithms incorporated and tested in a micro simulator.  Key deliverables include the prototype 
algorithms implemented in simulation, a final report summarizing the research and findings, and 
educational modules on the research results that can be incorporated into university curricula, or serve as 
material for standalone professional development courses.  

This chapter summarizes the results of the research on yielding and gap acceptance models and 
implementation of these models into microsimulation. The chapter consists of separate sections for 
summary and conclusion for driver yielding models, pedestrian gap acceptance models, and the results of 
the instrumented vehicle experiment. The chapter then presents limitations of the research and 
recommendations for future efforts. 

Conclusions 
This section presents the research conclusions for the yielding models, gap acceptance models, and the 

instrumented vehicle experiment. 

Yielding Model Conclusions 

The yielding models were developed as a binary logit model after testing various types of other model 
forms. Binary logit models best describe the probability of yielding as a function of microscopic traffic 
parameters related to the interaction of pedestrians and vehicles at the crosswalk. In the binary logit model 
the likelihood of yielding is represented as a value “1” and non-yielding as “0”. Various selection methods, 
including a full model with all variables, forward selection, and backward elimination were tested to explore 
effects of various independent variables. Eventually, a custom model was developed informed by these 
results.  

The proposed yield model takes into account practical significance of model terms, and feasibility of 
implementing the variables into simulation. The team developed two final models, one is calibrated for the 
data collection sites and includes the effect of each of the three states. The other is a universal model that 
is independent of behavior in a particular state. The two final models have R2 values of 0.3582 and 0.2680, 
respectively. These results speak to the fact that a lot of variability in yielding behavior was not explained 
by the models. The team therefor believes that much of the variability in yielding is a function of driver 
preferences and awareness of the situation at the crosswalk, neither of which can be evaluated with the 
observational study performed.  

In the final models, increased speed (SPD) was seen to reduce the likelihood of yielding, as did an 
increased required deceleration rate (DECEL). Presence of adjacent yields (ADJ), low speed platoons 
(LSPLT), presence of multiple pedestrians (MUP), and female pedestrians (FEMALE) were seen to 
increase the likelihood of yielding. Drivers are also more likely to yield to pedestrians on-campus 
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(CAMPUS) than off-campus. The coefficient estimates for Florida and North Carolina show that drivers 
are more likely to yield in Florida and less likely to yield in North Carolina, both relative to drivers in 
Alabama.  

In addition to the yield model prediction, nested logit models were used to predict the likelihood of a 
hard yield given that a yield occurred. A hard yield is defined as drivers coming to a full stop, as opposed 
to a rolling or soft yield, where vehicles are still in motion during the yield event. These models represent 
two-stage binary logit models, with the first stage consistent with the initial binary logit model. The second 
level predicts the likelihood that a driver performs a hard yield, given that the first level of the nested logit 
predicts a yield. The overall probability of a driver hard yielding can be calculated by multiplying the two 
probability functions. The soft yielding probability correspondingly is defined as the likelihood of a yield 
multiplied by one minus the probability of a hard yield.  

The final model to predict the likelihood of a hard yield has an R2 value 0.2507. Longer distances from 
the crosswalk (ADJDIST) and being in the lane closest to the pedestrian (NEAR) decrease the chance of a 
driver deciding to hard yield. This is likely because drivers that are further away from the pedestrian have 
time to react with a soft yield. Drivers are more likely to hard yield at Florida sites than North Carolina 
sites. Adjacent yields (ADJ), presence of multiple pedestrians (MUP), and higher necessary deceleration 
rates (DECEL) increase the chance that a driver will hard yield. If the deceleration rate required to yield is 
higher, then it is reasonable that the chance of hard yielding is increased. 

Gap Model Conclusions 

Using a Probit model formulation, gap acceptance models were fitted to data from the crosswalks in 
three states. Four models were explored, including (a) single lane non-controlled crossings; (b) single lane 
staged crossings; (c) all sites combined with non-controlled crossings and (d) all sites combined with staged 
crossings. The single lane models in (a) and (b) focused on sites with a single lane of traffic in each 
direction; approaches (c) and (d) also included data from a few three-lane and four-lane sites, with an 
adjustment variable to control for varying crossing widths. Non-controlled crossings refer to observational 
data from naturally-occurring pedestrian traffic at the crosswalks, while staged crossings refer to crossing 
decisions made by members of the research team.  

Single lane gap acceptance models, though simple in nature, were observed to have greater explanatory 
power, while also offering the advantage of relative ease of integration in a simulation environment. 
Goodness of fit tests showed that the single lane gap acceptance model drawn from the non-controlled 
dataset yielded the best model (Max Re-scaled R2=0.69). Thus this model was recommended for adoption 
in the simulation process, since it is developed from an internally-consistent data set (all single-lane 
decisions), and is derived from naturally occurring pedestrian events, thus avoiding potential bias by 
including crossing decisions made by members of the research team.  

The recommended model uses only two parameters, the size of the gap length in seconds, and a binary 
variable distinguishing between gaps and lag events (first arriving vehicle, without a prior lead vehicle to 
“open” the gap). An increase in gap length is associated with an increased probability of pedestrians 
crossing. A lag event has a negative coefficient, meaning that a pedestrian is less likely to accept a lag than 
a gap given the same length in seconds. This effect may be explained because the pedestrian may require 
some of the lag time to evaluate the available time to cross, after first arriving at the crosswalk. For a gap 
event, these “screening time” and decision making likely takes place before the gap “opens”.  

In the present study, every gap event was considered as an independent event. However, there are 
occasions where pedestrians tend to accept gaps on rolling basis (lane by lane basis). These lane-by-lane 
accepted gaps can be thought as a set of sequential discrete choices. Further efforts are recommended to 
develop models for multilane rolling gap acceptance. 
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Instrumented Vehicle Conclusions 

The instrumented vehicle experiment was conducted to provide insight on other models and variables 
that define the interaction between a vehicle and pedestrian(s) at the crosswalk. The models are 
implemented in the simulation to further supplement the yield and gap acceptance models described above. 
Overall, nine supplemental models were developed, for a total of eleven predictive models: 

1. Driver Yield Decision (from observational study),  

2. Pedestrian Gap Acceptance (from observational study), 

3. Pedestrian-Vehicle Conflict Identification,  

4. Driver Decision Distance,  

5. Driver Yield Type Check,  

6. Soft Yield Dynamics,  

7. Hard Yield Dynamics,  

8. Driver Yield Rejection Response,  

9. Driver Wait Time,  

10. Pedestrian Yield Recognition, and 

11. Pedestrian Yield Rejection. 

One of the models developed based on instrumented vehicle experiment is the driver’s decision point 
model. This model is developed to explain at which location relative to the crosswalks the driver makes a 
decision of Yield/No-Yield to the waiting pedestrians at curb. Based on the data collected from the 
instrumented vehicle experiment two models are developed, one for low speeds and one for higher speeds.  

Soft-Yield Dynamics model is developed based on the GPS data from in-vehicle study. It showed that 
vehicles tend to slow down (with a lower rate than stopping behaviors) and then coast (with a constant 
speed) until they pass the crosswalk. The results indicate that the vehicle deceleration rate of Soft-Yield 
behavior is a function of speed and distance at decision point with an R square of 0.3388. The total travel 
time during that Vehicle-Pedestrian Interaction process is the sum of crosswalk occupied time by 
pedestrians plus 0.25 sec of safety buffer. 

Project Deliverables 
The objective of this research was to develop new and improved algorithms for describing pedestrian 

and vehicle interaction at unsignalized midblock pedestrian crossings and to implement them in a traffic 
simulation environment. The algorithms developed address pedestrian and driver behavior at mid-block 
crosswalks, based on targeted empirical observations of naturally occurring and staged crossings. The 
models describe pedestrian gap selection and driver yielding behavior, and are compatible in form with 
algorithms used in microsimulation tools.  

The eleven resulting algorithms were implemented in a microsimulation model to assure successful 
technology transfer. The documentation of the behavioral models will allow for implementation of the 
algorithms in other simulation software packages as well. The behavioral models are based on empirical 
observations, and were derived from field observations of naturally occurring and staged pedestrian 
crossings.  

Results from this research may be used to support policy-level recommendations on multimodal 
transportation infrastructure design that considers pedestrian access. Specifically, the research produced: 
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Specific outcomes for this research include: (a), (b), (c) models describing vehicle dynamics and driver 
behavior in advance of the crosswalk, (d) prototype algorithms incorporated and tested in a micro simulator, 
and (e) educational modules for dissemination of the research results. 

1. A standalone model of pedestrian gap acceptance behavior at unsignalized crossings, sensitive to 
the available gap length and distinguishing gap and lag events, and developed from data collected 
at 24 unsignalized crosswalks in three states; 

2. A driver yielding behavioral model developed from 27 unsignalized crosswalks in three states, 
sensitive to vehicle dynamics, pedestrian attributes, traffic condition, and geographical area 
(North Carolina, Florida, and Alabama); 

3. Nine supplemental model describing various attributes of pedestrian-vehicle interaction, derived 
from an in-vehicle driver study with 15 participants conducted in Florida; 

4. Implementation of these algorithms in a simulation environment, which for the first time 
incorporates pedestrian-vehicle interactions at unsignalized crossings in a micro simulator; and  

5. Educational modules for dissemination of the research results to students in the southeast and 
nationally, supported by seamless technology transfer through the available simulation modules 
in a readily available simulator.  

Implications for Practice 
This research has broad impact on the state of the practice of pedestrian analysis in the Southeast region, 

and likely beyond. The field of pedestrian analysis and modeling has documented gaps and limitations, and 
this research aims to make significant improvements to the ability to model pedestrian traffic. In an age of 
increasing focus on accommodation of non-motorized road users in our transportation systems, engineers 
need the tools to evaluate the impacts of different intersection treatments on both pedestrians and the 
conflicting vehicle stream. Oftentimes, engineering analyses include the use of microsimulation tools, 
which to this point had not been specifically calibrated for pedestrian-vehicle interaction behavior. The 
behavioral models resulting from this research will assist in evolving these microsimulation tools to the 
point where analysts can predict the operational characteristics of unsignalized pedestrian crossings. 

This research delivered an improved understanding of pedestrian and driver behavior at unsignalized 
midblock crossing points and provides practitioners with enhanced tools for considering pedestrian 
presence. This goal is being achieved by developing algorithms for microsimulation tools to model the 
interaction between pedestrians and drivers. The pedestrian-vehicle interaction simulation was 
implemented in a microsimulator.  This project adds pedestrian movement and interaction with vehicles to 
the existing model that is programmed in the C# programming language to demonstrate an application of 
the statistical interaction models in microsimulation.  The simulation developed for this project is a proof 
of concept, as the models of interaction can be applied in any microsimulation that includes vehicles and 
pedestrians. The simulation is time step based and once the simulation is initialized, all vehicle movements 
and decisions are made prior to pedestrian movements and decisions, at each time step. Major sub models 
developed for the simulation are the results of various data collection and modeling efforts from this 
research and are presented in detail in the previous chapters. 
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Limitations 

Data Collection Limitations 

The data used for this research was collected at multiple midblock crosswalks at on and off of campus 
locations in the three states of North Carolina, Florida and Alabama. While these states all belong to the 
south-east region of the United States, they have shown different driver behavior, with state indicator 
variables being significant in the yielding models. This suggests that other states may have yet different 
yielding behavior. Therefore, one of the limitations of the model is that the yielding model calibration 
variable is only estimated for these three states.  

While doing the data collection all variables related to the interaction of the pedestrian and vehicle and 
any additional variables related to either the pedestrian or vehicle were recorded. However, not all of these 
variables were considered for modeling due to small sample size. For example, only 3% of the observations 
included an interaction between a pedestrian and a heavy vehicle, and therefore that variable was eliminated 
for final modeling since it wasn’t being fairly represented in the dataset. 

For the staged pedestrian crossings in North Carolina only female pedestrians were tested and in the 
Alabama only male participants were used. Naturally occurring pedestrians are a mix of females and males 
pedestrians. This limitation was overcome by limiting the recommended gap acceptance model to only 
naturally-occurring pedestrians, which included both male and female pedestrians in all three states.  

Model Limitations 

Data collection limitations impose similar model limitations. The models predict the likelihood of an 
action taken by the pedestrian or the driver. In case of a yield, given certain conditions, such as speed, 
proximity to crosswalk or other factors, the likelihood of yielding increases or decreases. However, the 
probability of yielding is only being calculated based on the variables used in the model. In a real condition 
other factors might play in yielding. These factors include driver courtesy, whether the driver is rushed to 
get to work for example, and other behavioral factors that cannot be captured in an observational study. 
The same is true for the likelihood of accepting a gap in traffic by a pedestrian, where pedestrian attitude, 
risk preference, or even visual and cognitive abilities cannot be observed. Previous research has shown that 
the likelihood of accepting a shorter gap increases as pedestrian wait time increases at the crosswalk. This 
factor is not reflected in the gap acceptance model.  

Simulation Implementation Limitations 

The simulation Implementation in Chapter 6 discusses the simplifying assumptions and limitations of 
the methodology in detail. A summary of the limitations is presented here. Other than the models developed 
as part of this research, simulation requires comprehensive details regarding the interaction of the 
pedestrians and vehicles at the crosswalk. Therefore the simulation implementation includes limitations 
related to both pedestrian behavior and driver/vehicle behavior. All of the models and sub models were 
developed, calibrated, and validated based on our study sites. Conditions with different vehicle and 
pedestrian flows and geometry cannot be accurately simulated using our tool.  

Vehicles make yielding decisions only when they are the closest vehicle in their lane to the crosswalk. 
Following vehicles maintain car following behavior until their leader passes through the crosswalk, so 
queued and platooned vehicles will make yield decisions very close to the crosswalk. This approach was 
used because the observational study only collected information about the lead vehicle in platoons and 
queues. Therefore, the following driver’s ability to decide whether to yield prior to their leader passing 
through the crosswalk cannot be accurately simulated using our data. 

The pedestrian delay in this simulation approach only includes waiting time at the edge of the crosswalk 
and not any pedestrian friction effects from increased density in the crosswalk. Distributions of pedestrian 
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characteristics are taken from the data collected in the observational study and are not necessarily 
representative of any one location. 

Future Research 
This research focused on studying pedestrian crossings at unsignalized midblock crosswalks in three 

states, North Carolina, Alabama and Florida. Although a universal model is developed for yielding and gap 
acceptance models, future research is needed to develop calibration factors for other states across the United 
States. The models include two types of land-use, university campus areas and down-town crosswalks. 
Future research should consider other types of land use, such as residential, recreational, or suburban and 
rural areas, as well as sites in other states. The research does not include any mid-block crosswalk with any 
type of treatment such as a speed table or a pedestrian beacon. Additional research is needed to test the 
driver compliance with such treatments and quantify the effect of these treatments on yield and gap 
acceptance. 

Additional modeling approaches are recommended as future research. Multinomial regression and logit 
models, as well as ordered probit models, could be used to predict the probabilities of hard and soft yielding. 
Macroscopic characteristics could be examined in future modeling efforts. These characteristics could 
include number of lanes, lane width, and crossing or striping type. A continuous decision model will be 
considered as opposed to event-based modeling. This may better represent the true interaction between 
drivers and pedestrians in decision-making, since decisions are likely not made at a single point but change 
over time.  
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APPENDIX A: DETAILED LITERATURE REVIEW 

Introduction 
Pedestrian behavior at unsignalized crossings is a subject that needs to be further researched. The 

facility type as well as the user type can affect how the pedestrian behaves. Behavioral attributes include 
pedestrian-vehicle interaction (gap acceptance and driver yielding) and pedestrian crossing traits (path 
choice, walking speed, and compliance). Current analysis methods for pedestrian behavior include HCM 
methods and microsimulation. There are also several forms of data collection approaches that should be 
examined. This paper will be a resource document for generating the models and analytical frameworks for 
the methodologies to be developed in subsequent research tasks. 

Pedestrian Crossing Facility Types and Types of Users 

Facility Types 

Pedestrian crossings are a common feature at signalized intersections where they are typically tied to 
the vehicular signal phasing scheme. The analysis of these types of pedestrian crossings is outlined in the 
HCM. Besides these signalized crossing locations at intersections, there are five major types of unsignalized 
pedestrian crossings: crossings at channelized right-turn lanes, mid-block pedestrian crossings, crossings at 
the approaches to a modern roundabout, crossings at two-way stop-controlled (TWSC) intersections, and 
crossings at all-way stop-controlled (AWSC) intersections. The type of crossing control (stop, yield, and 
uncontrolled) will be the focus of our research and data collection. The types of intersection configuration 
will be discussed below as well as the types of crossing control. 

Channelized Right-Turn Lanes 

Channelized right-turn lanes (CTL) are commonly found at signalized intersections to create additional 
capacity for heavy right-turning traffic. These single-lane bypass lanes are typically free-flowing with a 
yield-controlled merge into downstream traffic and may be outfitted with an acceleration and/or a 
deceleration lane. A pedestrian crossing at the main signalized intersection inevitably requires the 
pedestrian movement to also cross these CTLs, which is most commonly done at an unsignalized zebra-
striped crosswalk in the center of the turn-lane. For a detailed discussion on CTL geometry and alternative 
placement for the pedestrian crosswalk, refer to NCHRP Report 279 (TRB, 1985) and the NCHRP 3-72 
project (TRB, 2003). While not discussed in detail in this document, a previously published paper 
(Schroeder, Rouphail and Wall Emerson, 2006) presents a detailed analysis comparing the crossing abilities 
of blind and sighted travelers at these types of facilities. 

Mid-Block Crossings 

In addition to crossings at signalized intersections, pedestrian crossings are commonly found at mid-
block locations. Contrary to what is implied in the terminology, these crossings are not necessarily located 
in the middle of a block, but rather can be found anywhere along a roadway at locations away from an 
intersection crossing. The roadway can range anywhere from one to four or more lanes and may or may not 
be outfitted with a signal. The decision to place a signal at a mid-block location is regulated by the 
pedestrian signal warrant in the MUTCD (FHWA 2003). 

Pedestrian flows would typically be modeled compliant with both crosswalk location and signal 
phasing. However, research performed on Hillsborough Street in Raleigh, NC suggests that a significant 
percentage of pedestrians will cross outside the intended crosswalks and against a 'Don't Walk' indication 
at a signal (Schroeder, et. al., 2009). A gap acceptance model is required to describe this behavior in 
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simulation and a compliance algorithm would be used to decide when the gap acceptance logic is applied. 
The data suggest that the frequency of jaywalking behavior is higher at longer midblock segments and 
further increases during class breaks due to elevated pedestrian activity. The impact of pedestrians on the 
operations of traffic signals is reduced, as was made evident by skipped WALK phases, with some 
percentage of pedestrians crossing at midblock. The arrival distributions of pedestrians could no longer be 
viewed as a random event during class breaks which showed a higher concentration of pedestrian flows. 
The issues of path choice and time sensitivity seem to be major contributing factors, where jaywalking 
behavior is increased along long midblock segments, high (anticipated) wait times, and during class 
changes. 

Roundabout Crossings 

Pedestrian crossings are also found at modern roundabouts, which are becoming an increasingly 
popular traffic control feature in the US. A long-term staple in Europe and Australia, an online database 
(Kittelson Associates, 2007) now lists more than 1,000 roundabout intersections across the United States 
justifying their inclusion in this discussion. The pedestrian crossing at modern roundabouts is typically a 
two-stage crossing with pedestrians being able to find refuge on the splitter island as shown in Figure 32 
below. The pedestrian crossing location is also designed to allow storage for one or more vehicles waiting 
to enter the roundabout downstream of the crosswalk. 

 
Figure 32: Roundabout Pedestrian Crossing 

 (SOURCE: FHWA Roundabout Guide, 2000) 
For the purpose of discussion it is assumed that the base condition for pedestrian crossings at any of 

the three types of locations is a zebra-striped unsignalized crosswalk. At these types of crossings, legislation 
typically gives pedestrians the right-of-way, but motorist compliance varies. To further enhance the 
crossing and to make it safer for pedestrians, there are several categories of pedestrian crossing treatments 
that aim to facilitate pedestrian crossings. 

Two-Way Stop-Controlled (TWSC) 

TWSC intersections are common in the US and have two typical configurations according to the HCM. 
The first is a four-leg intersection where the major street is uncontrolled and the minor street is controlled 
by stop signs (TRB, 2010). The second configuration is a three-leg intersection where the single minor-
street approach is controlled by a stop sign. The approaches for minor streets can be public streets or private 
driveways.  
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At the major crossing of a TWSC intersection, pedestrians must wait for an acceptable gap before 
crossing. At the minor crossing, pedestrians can cross while a vehicle is stopped at the stop sign or cross if 
there are no vehicles on the minor approach. Turning movements from the major approach may also affect 
a pedestrian’s ability to cross. Thus, the major crossing for a TWSC intersection is similar to a midblock 
crossing and the minor crossing is like an AWSC crossing, with the addition of turn conflicts from the 
major street.  

All-Way Stop-Controlled (AWSC) 

Every vehicle is required to stop before proceeding at AWSC intersections. Since each driver must 
stop, the decision to proceed into the intersection is a function of traffic conditions on the other approaches. 
A driver can proceed immediately after stopping if no other traffic is present at the other approaches. If 
there is traffic on one or more of the other approaches, a driver proceeds only after determining that no 
vehicles are currently in the intersection and that it is the driver’s turn to proceed (TRB, 2010). Pedestrians 
at this type of intersection may cross in front of stopped vehicles, but must also be alert of turning vehicles 
from other approaches. 

Crossing Control Types 

There are three categories of crossing control: stop, yield, and uncontrolled. For stop-controlled 
approaches, vehicles and pedestrians must stop and observe their surroundings before continuing through 
the intersection. AWSC intersections and the minor approach of TWSC intersections are stop-controlled. 
For yield-controlled approaches, vehicles can continue on their chosen path if it is unobstructed. 
Channelized right-turn lanes are yield-controlled because the vehicles coming from the channelized lane 
must yield to any vehicles that are already in major road. Roundabouts are also yield-controlled. Drivers at 
the roundabout approaches must yield to other drivers who are in the circle. For uncontrolled intersections, 
drivers can continue through the intersection unheeded, though they should still be aware of any turning 
vehicles in the intersection. Midblock intersections and the major approach of TWSC intersections are 
uncontrolled. Uncontrolled intersections are likely to cause the most difficulty for pedestrians. 

User Types 

For the assessment of pedestrian behavior at road crossings, the heterogeneous nature of the pedestrian 
population needs to be taken into consideration. While gap acceptance for drivers is strongly linked to the 
acceleration capability of the vehicle, pedestrian decisions are a function of individual attributes. A typical 
population includes students, elderly, blind pedestrians, children, and people with baby strollers. There are 
drastic differences in the ability and the willingness to make a crossing decision among these sub-groups. 
While pedestrian activity in many suburban environments is scarce, roadways in proximity to universities 
see frequent pedestrian crossings at both signals and mid-block locations. A lot of recent research has 
focused on gap acceptance by blind pedestrians. Ashmead et al. (2005) found that when attempting to cross 
at a two-lane roundabout, blind pedestrians waited three times longer than sighted pedestrians and 
furthermore made about 6% ‘risky’ decisions. Sighted pedestrians didn’t make any. In another example, 
Sun et al. (2002) found from data at an unsignalized mid-block pedestrian crossing that both the minimum 
accepted gap time and the average accepted gap were lower for younger than for older pedestrians. 

In a study by Avineri, it was found that pedestrian crossing behavior is affected by age and fear of 
falling within the analysis of head pitches (reflecting attention to traffic) and crossing speed. In an 
observation, 203 pedestrians were video recorded and later surveyed in order to find the impact of age and 
FOF. Pedestrian crossing behavior is random, but age and FOF make a difference on speed and head pitch. 
A limitation of this study was that components were limited and additional characteristics of pedestrians 
should be considered. More samples should also be observed. The surveys showed that the result of age 
and FOF is accurate (Avineri, et. al., 2012). 
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Levels of experience for different age groups greatly affect pedestrian behavior. Young children are 
typically short, risky, inexperienced, have limited peripheral vision and have trouble locating sound sources 
(Fitzpatrick, 2006). Preteens have increased physical abilities, but are still risky and inexperienced. High 
School Age children are typically more physically fit, but they also lack experience and training and can 
feel invincible. Senior Adults have likely lost some of their physical abilities and thus may overestimate 
their abilities. Those with disabilities, permanent or temporary, may have restricted mobility. People new 
to the urban experience may be used to different motorist behavior and may try to cross unsafely and put 
themselves at risk (FDOT, 1999). Pedestrian inattention due to distraction from multimedia device usage, 
such as cell phones, can also have an effect on pedestrian behavior. 

Pedestrian Behavioral Attributes 
This section describes the behavioral components in the interaction of pedestrians and vehicles at 

unsignalized crosswalks: pedestrian gap acceptance and driver yielding behavior. Path choice, walking 
speed, and compliance of pedestrians will also be discussed. Some discussion on signalized intersections 
has also been included when it would be useful for comparison. 

Pedestrian Crossing Attributes 

The pedestrian population arriving at the crosswalk needs to be treated differently from a vehicle 
population, as pedestrian movements are generally much less constrained than vehicles traveling within a 
travel lane (Blue and Adler, 2000). They concluded that pedestrians are not officially channelized, can vary 
their speed, can occupy any part of the walkway, can bump into each other, and have almost instantaneous 
acceleration/deceleration profiles. These attributes have clear implications for microscopic analysis and 
modeling of pedestrians, as the assumption that pedestrians simply operate like “small vehicles” is not valid. 
The crossing attributes for pedestrians are divided in this review into pedestrian path choice, pedestrian 
walking speed, and pedestrian compliance with intersection control. 

Pedestrian Path Choice 

The most important factor for utilizing a crossing for a pedestrian depends on whether it is located 
between the point of their origin and their destination (Sisiopiku and Akin 2003). Path choices and the 
strategic location of pedestrian crossings also improve compliance by pedestrians, which are recognized by 
guidebooks in the pedestrian safety field (Harkey and Zegeer, 2004). 

Several researchers attempted to understand pedestrian path choices. Chu (2002) developed a nested 
logit model based on theoretical expectations of how pedestrians cross roads in urban settings. The model 
contains variables descriptive of the street environment including continuous variables (such as roadside 
walking distance, crossing distance, and traffic volume) and discrete characteristics (such as the presence 
of marked crosswalks, traffic signals, and pedestrian signals). 

Chu (2002) found that people are more likely to cross at an intersection with a traffic signal or a 
pedestrian signal head (Walk/Don’t Walk signs). Also, the likelihood of people crossing at any location 
with a marked crosswalk is higher than those without. However, depending on the type of facility, the 
influence of these discrete characteristics can vary. The results of Chu’s work (2002) show that the presence 
of a marked crosswalk is more influential at an intersection than at a midblock location. The most influential 
factors for crossing at an intersection are pedestrian signals, marked crosswalks, and traffic signals. An 
increase in any continuous variable for a given option will result in a decrease in the probability of that 
option being chosen (i.e., the further a pedestrian has to walk to use a particular crossing option, the less 
likely it is that the pedestrian will choose that option). The magnitude of the decrease varies across these 
continuous variables and across options (Chu, 2002). 

Simulation of pedestrian path choice and other behaviors can be divided into two categories, one is a 
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macroscopic level and the other is a microscopic level which involves individual units with individual 
traffic characteristics (Teknomo, 2006). With a more detailed approach, a microscopic pedestrian flow 
model simulates the walking behavior of each pedestrian, as well as the personal space, speed and 
interactions between pedestrians and the surrounding environment. It is said that real pedestrians influence 
the behaviors of each other either with mutual or reciprocal action, meaning that they will avoid or overtake 
others in order to achieve their own goals, such as a steady pace or enough individual space.  

The interaction between pedestrians makes a difference on pedestrian behaviors and movement. Some 
traffic strategies on pedestrian flow and behavior are required because efficiency and safety will decrease 
on the basis of pedestrian minimum-interaction behaviors without any traffic treatment. A lane-formation 
approach is demonstrated as a good way to organize pedestrian flow to improve efficiency without 
increasing walking space for pedestrians. Pedestrians under the condition of traffic control treatment (i.e. 
lane-formation) tend to follow others rather than make their own walking path (Teknomo, 2006). 

Pedestrian Walking Speed 

Pedestrian walking speeds may vary for several reasons. For example, the 2000 Highway Capacity 
Manual (TRB, 2000) chapter on pedestrians recommends a walking speed of 4.0 ft/sec, with a lowered 
speed of 3.3 ft/sec if the fraction of elderly pedestrians exceeds 20% and a further reduction by 0.3ft/sec at 
upgrades exceeding 10%. Bennett et al. (2001) investigated pedestrian walking speeds at signalized 
intersections and mid-block crossings and found slower average speeds at the mid-block locations. The 
authors also found differences between the 15th and 85th percentile walking speeds of about 2.5 ft/sec and 
significant variation between pedestrians with and without walking difficulty at all studied locations.  

Fitzpatrick et al. (2006) recommended in a more recent NCHRP report to lower the pedestrian walking 
speed used by the MUTCD from 4.0 ft/s to 3.5 ft/s, but further acknowledged that even lower speeds may 
be appropriate in some cases, such as where pedestrians typically walk more slowly or use wheelchairs in 
the crosswalk. The variability of walking speed is important when discussing crossing behavior, because it 
is directly proportional to the time required to cross a given distance. The research found that as many as 
one third of pedestrians travel at a slower pace, specifically children, older pedestrians, and persons with 
disabilities. The mean start-up time (from the start of the Walk signal to the moment the pedestrian steps 
off the curb and starts to cross) was 2.5 s for older pedestrians, compared with 1.9 s for younger ones 
(Fitzpatrick, 2006). The walking speeds for pedestrians with physical disabilities are also lower than the 
average walking speed assumed for the design of pedestrian crosswalk signal timing. These average speeds 
range from 1.97 ft/s for an above knee amputee to 3.55 ft/s for those using a wheelchair. Weather conditions 
can also affect walking speeds. The presence of snow, ice, or slush on sidewalks and roads leads to ill-
defined curbs, hidden potholes and obstacles, greater amounts of glare and visual difficulties, and a greater 
chance of a slip or fall by a pedestrian, especially for an older person (Dewar, 2002). 

Tarawneh (2001) found through a study in Jordan that pedestrians tended to walk faster after longer 
wait times and also that pedestrian walking speed varies by age, gender, distance and group size. A walking 
speed of 1.11 m/s (3.6 ft/s) was suggested with males, small groups, and those aged 21-30 walking faster 
than females, groups of three or more, and other age groups. 

Pedestrian Compliance 

The analysis of the interaction between pedestrians and drivers is complicated by the lack of a clear 
understanding of right-of-way legislation at unsignalized locations. While many states have legislation in 
place requiring vehicles to yield to pedestrians in the crosswalk, field observations on busier streets quickly 
make it evident that compliance varies. A study of six two-lane roundabout approaches in four states 
showed that although all these states require drivers to yield to pedestrians within the crosswalk the yielding 
is not perfect (Salamati et al. 2013). In a sample of state right-of-way laws applicable to the study (North 
Carolina, Maryland, Indiana and Tennessee), it is evident that drivers should yield the right of way to 
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pedestrians in the crosswalk (NCDOT 2012, MDOT 2012, Tennessee Traffic Safety Resource Services 
Agency 2012, and Indiana Legislative Services Agency 2012). However, the study shows that the yielding 
rate varies from 0% to 85% at two-lane roundabout approaches (Salamati et al. 2013). 

More commonly, drivers and pedestrians use methods of non-verbal communication to determine 
crossing priority. The willingness of a driver to yield and the assertiveness with which a pedestrian seizes 
the crosswalk are two of many factors that may influence this interaction. Other factors may include the 
cross-section of the road, the type of crossing treatment or the general level of congestion at the crossing 
location.  

Studies of pedestrian behavior show that not everyone complies with traffic laws. The enforcement of 
pedestrian compliance with traffic signals is rarely emphasized relative to drivers being held accountable 
for having to stop at a red traffic signal (for example through automatic enforcement). Ishaque and Noland 
(2008) found that crossing speed, gap acceptance and signal compliance with relation to age and gender are 
among the factors influencing the crossing behavior of pedestrians. Perception of one’s own safety is one 
of the internal factors identified by Yagil (2000) to influence pedestrian compliance. Yagil also found that 
a group of pedestrians behaves differently than individuals. Pedestrians were more likely to wait at an 
intersection if encountering a group of pedestrians already waiting at the crosswalk (Yagil, 2000). 

Several researchers studied changes in pedestrian behavior by increasing pedestrian wait time at the 
intersection. Dunn and Petty (1984) found that pedestrians at midblock crossings who have been waiting 
for 30 or more seconds showed more risky behavior. A study of pedestrian risk exposure at signalized 
intersections in India by Tiwari et al. (2007) showed similar results. One of the characteristics of risky 
behaviors and non-compliance at the crosswalk is accepting shorter gaps in traffic. 

However, Sun et al. (2002) found that pedestrians who continue to wait at the crosswalk for a long time 
are still careful in nature and would not accept shorter gaps. The authors found an increase in the average 
accepted gaps as the waiting time (delay) increases. 

Accordingly, the HCM predicts an increasing likelihood of non-compliance as pedestrian delay 
increases (TRB, 2010). Therefore, non-compliance can be translated into adjusting the critical gap to a 
lower value as the pedestrian delay or waiting time increases. This phenomenon should be considered for 
developing gap acceptance models for pedestrians. Pedestrian delay in the HCM at signalized intersections 
is a function of signal timing parameters and assumes all pedestrians comply with the signal phase (TRB, 
2010). 

For unsignalized crossings, the Highway Capacity Manual offers a methodology for estimating delay 
based on gap acceptance characteristics that could feasibly be applied to non-compliant pedestrians at 
signals. Guo et al. (2004) created a model for pedestrian delay of non-compliant pedestrians at signalized 
crossings by taking into account the effect of traffic platooning resulting from upstream signals. The authors 
found an increase in delay for pedestrians who would otherwise cross illegally, while having little effect on 
compliant pedestrians.  

Pedestrian-Vehicle Interaction 

Current traffic engineering analysis tools and capacity models are of limited use for evaluating the 
interaction of pedestrians and vehicles at unsignalized crossing facilities. The analysis methodologies for 
unsignalized intersections in the HCM are traditionally limited to boundary cases, which assume strictly 
enforced right-of-way rules (TRB, 2000). These assumptions mean that pedestrian operations are analyzed 
by either assuming pedestrian priority (100% driver yielding) or vehicle priority without yielding right-of-
way to pedestrians (Schroeder and Rouphail, 2011). The more complex interaction of the two modes in 
which some drivers yield to pedestrians and some pedestrians accept gaps in traffic is typically ignored in 
traditional HCM methods. This type of interaction was previously referred to as a mixed-priority crossing 
(Schroeder and Rouphail, 2010). Changes in the 2010 HCM (TRB, 2010) have made an attempt at 
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combining pedestrian gap acceptance and driver yielding behavior for pedestrian delay analysis, but the 
revised methodology is not based on empirical observations and has not been calibrated by field 
observations. In practice, alternative analysis tools in the form of microscopic simulations are frequently 
used to help overcome some of the limitations of the HCM. 

Vehicle-pedestrian interaction can be characterized by four interaction processes that can be expressed 
in the form of four probability terms, following a framework for evaluating unsignalized pedestrian 
crossings in a simulation context (Schroeder and Rouphail, 2007): 

P(G)  - The probability of a gap occurring in the traffic stream 

P(GU)  - The probability of a gap being utilized by the pedestrian  

P(Y)  - The probability of a driver yielding  

P(YU) - The probability that a yield is utilized by the pedestrian 

The probability of gap occurrence, P(G), is a function of vehicle arrivals and the headway distribution 
in the traffic stream. The behavioral characteristics of pedestrians and drivers are generally described by 
the probability of crossing in a gap, P(GU), and the probability of a driver yielding to a waiting pedestrian, 
P(Y). The fourth parameter, P(YU), has been observed as an important crossing attribute for pedestrians 
with vision impairments, and may also be applicable to other pedestrian populations, who tend to reject or 
miss a portion of the encountered yields. The focus of this review is on the second and third component of 
the aforementioned framework: pedestrian gap acceptance and driver yielding behavior. 

Pedestrian Gap Acceptance 

Pedestrian crossing behavior has not been explored to the same degree that vehicle gap acceptance has 
been investigated. While similar in concept, there are a variety of pedestrian characteristics and caveats in 
the interaction between the pedestrian and vehicle modes that give reason to derive separate pedestrian gap 
acceptance models. This section provides an overview of general vehicle gap acceptance models, followed 
by a review of reasons why pedestrians are believed to behave differently when making a decision to cross 
the roadway and summarizes existing research. 

Overview of Vehicle Gap Acceptance Models 

Traditionally, literature on vehicle gap acceptance has used a constant value of critical gap (CG) that 
is calibrated for local conditions (Troutbeck and Brilon, 2002). It can differ depending on the type of 
movement and the type of vehicle. For example, the CG for left turns is likely to be larger than for right 
turns, and heavy vehicles tend to have longer CGs, because of slower acceleration profiles and longer 
vehicle lengths. In the following, this type of gap acceptance model will be referred to as the deterministic 
model for gap acceptance.  

By definition, the critical gap is the time between consecutive vehicles on the major road at which a 
vehicle waiting at the minor approach is equally likely to accept the gap or reject it. Literature on gap 
acceptance oftentimes assumes that drivers are both homogeneous and consistent. In a homogeneous driver 
population, all drivers have the same critical gap. Under the consistency assumption, the same gap 
acceptance situation will always cause a driver to make the same (consistent) decision. Although these 
assumptions are not realistic, Troutbeck and Brilon (2002) justify their use because inconsistencies in driver 
behavior tend to increase capacity while a heterogeneous driver population will decrease capacity, thereby 
offsetting the previous effect. 

The most common US application of deterministic gap acceptance is in the US Highway Capacity 
Manual (TRB, 2010). The manual recommends using a constant critical gap from listed default parameters 
or locally estimating CGs from field conditions. It further recommends a reduction of its tabulated CG 
values for heavily populated regions (greater than 250,000), suggesting that drivers in those regions may 
be more likely to encounter frequent congestion and have thus lowered their CG threshold. 
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There are several ways for estimating CG from field data, including a graphical method (Troutbeck and 
Brilon, 2002), a regression method (Troutbeck and Brilon, 2002), a statistical method based on maximum 
likelihood estimation (Troutbeck, 2001), and the Ramsey-Routledge method (ITE, 2010). In application of 
these methods, the capacity of the minor street flow becomes a function of the CG on the minor approach 
tc, the follow-up time on the minor approach tf and the conflicting major street flow qp as shown in an 
HCM2010 equation adopted below: 

Equation 33: HCM Capacity Equation for Two-Way Stop Controlled Intersection (TRB 2010) 
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The follow-up time describes the time needed for additional vehicles in a stored queue to accept the 

same gap. The size of tf is typically less than tc, because some of the decision and acceleration times for 
subsequent vehicles occur during the initial gap. 

In addition to deterministic gap acceptance, a report compiled for the Federal Highway Administration 
(FHWA) Next Generation Microsimulation (NGSIM) research effort (Cambridge Systematics, 2004) 
discusses probabilistic gap acceptance models, for which the driver response for an identical event (same 
speed, same gap in conflicting traffic) can be drawn from a probabilistic distribution of possible responses. 
Such probit models assume a mean CG with a random variance term depending on the specific coefficients 
defined for a driver and/or situation. Conceptually, probit models could represent inconsistent driver 
behavior and a heterogeneous population by drawing gap acceptance decisions from random distributions. 

Alternatively, probabilistic behavior can be modeled in the form of a binary or multinomial logit model. 
A logit model could describe the likelihood of gap acceptance as a function of a number of different 
parameters (for example assertive vs. non-assertive pedestrians, gap time, and type of the arriving vehicle). 
It thus introduces greater complexity in the gap acceptance model, but in turn requires a lot of data for 
calibration. Logit Gap Acceptance Models have been proposed by Ben-Akiva and Lerman (1985) and 
Cassidy (1995) and Probit Models were suggested by Mahmassani and Sheffi (1981) and Madanat (1994). 

Some researchers have proposed even more complex algorithms for modeling gap acceptance. Kita 
(1993) used neural networks to describe the process, under the assumption that gap acceptance is not a 
linear sequence of events, but that multiple factors affect the decision making process. This modeling 
approach is capable of removing consistency assumptions, but the authors upheld the assumption of 
homogeneity.  

Models for Pedestrian Gap Acceptance 

Above discussion suggests that pedestrian movements, pedestrian gap acceptance, and pedestrian-
vehicle interaction are different enough from conventional vehicular traffic to warrant alternate models for 
pedestrian movements, gap acceptance, and capacity. These differences are discussed below. 

Underlying assumptions of pedestrian movements must be revisited before adopting gap acceptance 
concepts. Queued vehicles on a single-lane approach are subject to a first-in-first-out (FIFO) priority, but 
multiple pedestrians can generally accept the same gap simultaneously (Blue and Adler 2000). Pedestrian 
gap acceptance is arguably unaffected by the concept of follow-up time. The critical gap may be similarly 
estimated for vehicles and pedestrians, but the use of the gaps are different for pedestrians. Also, the critical 
gap is a function of pedestrian speed, so it may vary more significantly than that of vehicles for the same 
movement. The deterministic gap acceptance model in the HCM2010 offers a method for estimating 
pedestrian critical gap tc as a function of crosswalk length L, Pedestrian Walking Speed Sp and pedestrian 
start-up time ts (Equation 34). 

Equation 34: Pedestrian Critical Gap after HCM (TRB 2010) 
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Rouphail et al. (2005) described pedestrian gap acceptance as the sum of latency and actual crossing 

times, an approach similar to the HCM method discussed above. The authors used field estimates of the 
median latency time in place of the HCM start-up time. The authors’ research compared latency times of 
blind and sighted pedestrians and found that blind pedestrians exhibited significantly larger latency times, 
resulting in longer critical gap values and presumably more delay. The increased delay to blind pedestrians 
is consistent with research findings presented above. 

Researchers have also attempted to use advanced gap acceptance models to describe pedestrian 
crossings. Sun et al. (2002) calibrated probit and binary logit models to describe both pedestrian gap 
acceptance and driver yielding from actual field data. The authors excluded about 25% of observations for 
later model validation and found that binary logit models performed best in both cases, correctly predicting 
85.6% of gap acceptance and 87.1% of yielding decisions. For comparison, a probit model only resulted in 
68.5% correctly predicted gap acceptance decisions, and a deterministic critical gap model actually 
achieved a surprising 81.5% correct predictions. Regression analysis found the important factors for 
pedestrian gap acceptance to be gap size, number of pedestrians waiting, and age of pedestrians. The authors 
recommended the binary-logit model for estimation, stating that the good performance of the deterministic 
model was likely due to an extraordinarily homogeneous pedestrian population. 

From observations in China, Yang et al. (2006) derived a pedestrian gap acceptance formulation for the 
critical gap (CG) of pedestrians. This equation is shown below, where L is the length of the crossing, S is 
the walking speed and F is a factor of safety based on the pedestrian’s confidence. 

Equation 35: Critical Gap (CG) for Pedestrians 
CG = L/S + F 

Similar assumptions for pedestrian gap acceptance were used in the analysis of unsignalized pedestrian 
crossings at roundabouts and channelized right turn lanes by Rouphail et al. (2005) and Schroeder et al. 
(2006), respectively. Schroeder (2008) developed logistic regression-based gap acceptance models for 
unsignalized crossings to better describe the process of pedestrian gap acceptance by incorporating vehicle 
dynamics, pedestrian characteristics and concurrent events at the crosswalk. 

Crossing speed, and thus critical gap, can vary widely for pedestrians, based on a variety of reasons. 
When interpreting the consistency assumption for gap acceptance described above, it is intuitive that 
pedestrians will tend to alter their gap acceptance attributes if they are in a hurry versus if they are on a 
leisure trip, for example. Documentation of this behavior was provided in the section on pedestrian 
compliance above. The consistency assumption then is violated, because a similar situation of vehicular 
gap and speed at a given geometry will result in different decisions by the pedestrian, depending on his/her 
state of mind. 

Pedestrian Follow-Up Time 

The HCM equation referenced above uses the critical gap and follow-up time to calculate minor-street 
capacity as a function of major street flow (TRB, 2010). While a pedestrian critical gap can be observed 
from field data, the follow-up time concept proves challenging. 

Above reference to a lack of channelization for pedestrian traffic (Blue and Adler 2000) means that 
pedestrians are not confined to sequential queue storage like vehicles, but can occupy spaces next to each 
other in the waiting area. In fact, the HCM offers equations for analyzing pedestrian storage space at the 
crosswalk (TRB, 2010). Therefore the concept of follow-up time is not applicable for pedestrians in the 
same fashion as for vehicles. For pedestrians, it is possible that for example three pedestrians cross at the 
exact time, depending on the width of the crossing. In this case then, the classical follow-up time wouldn’t 
apply until the 4th pedestrian, who had to wait behind the other three. 
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Driver Yielding Behavior 

Driver yielding behavior has been linked in research to operational characteristics such as vehicle 
speeds (Geruschat and Hassan 2005), as well as geometric characteristics of the crosswalk location, for 
example; entry versus exit leg at a roundabout (Rodegerdts, 2007, Ashmead et al., 2005). But to date, these 
isolated studies of driver yielding behavior at unsignalized crosswalks have largely been descriptive, with 
little insight gained towards predicting driver yielding at such crosswalks. The rate of driver yielding to 
pedestrians at unsignalized crosswalks varies across locations (Rodegerdts, 2007), but in nearly all cases is 
less than 100%. A range of treatments exist that are intended to increase the rate of driver yielding 
(Fitzpatrick, 2006). 

Findings of pedestrian operations at roundabouts by NCHRP report 572 (Rodegerdts, 2007) show that 
43% of the drivers at two-lane approaches of the roundabout do not yield to pedestrians. The lack of yielding 
is only 17% for single-lane roundabouts. Lack of yielding is also higher at exit (54% not yielding) compared 
to 33% not yielding at the entry. Based on these findings, the number of lanes and crosswalk location (entry 
or exit) are the two design elements that affect pedestrian accessibility at roundabouts. 

A study by Salamati et al. (2012) at six two-lane roundabout approaches across the country showed that 
the yielding rate varies from 0% to 85% at the exit and entry leg of roundabouts depending on pedestrian 
assertiveness to cross the street, pedestrian disability (blind or sighted), entry or exit leg of the roundabout 
and the study location. 

Predictive Yielding Models  

In previous research, Sun et al (2002) collected data on driver yielding and pedestrian gap acceptance 
at an unsignalized midblock pedestrian crossing and compared the fit of different statistical models. The 
authors estimated yielding probabilities based on the discrete parameters of driver gender, driver age, type 
of vehicle, number of pedestrians, and the presence of an opposing yield. They found that drivers are more 
likely to yield to a group of pedestrians and that older drivers were more likely to yield than younger drivers. 
Their results showed that a logistics modeling approach outperformed a probit model for driver yielding, 
as well as for pedestrian gap acceptance. The authors looked at only one crosswalk and did not analyze any 
pedestrian treatment effects. The authors collected 1.5 hours of each AM and PM peak data over 5 days, 
for a total of 15 hours of data. The resulting samples included 687 accepted gap, 938 rejected gap and 1254 
motorist yield data points, which was sufficient to allow them to estimate statistically significant probit and 
logit models. 

The research findings above can be summarized in that the decision of a driver to yield is a function of 
both operational and behavioral parameters. In the first category, the yield decision is triggered by both the 
speed of the vehicle and the assertiveness of the pedestrian. In the behavioral category, drivers are 
influenced by the number of pedestrians at the crosswalk and the clothing worn by the pedestrian(s) (more 
willing to yield for a brightly clothed pedestrian than for a drably clothed pedestrian). Similarly, it can be 
hypothesized that yielding is impacted by the presence of a conflict downstream of the crosswalk. There 
are also cases where a driver may be forced to yield, because of a pedestrian GO decision in a too-short gap 
in traffic. 

 

Contributing Factors to Driver Yielding 

Conceptually, the probability of a driver to yield when a pedestrian is present at the crosswalk, P(Y), 
can be expressed as a function of independent parameters βi; much like it would be done in multi-linear 
regression analysis. Similarly, the probability of a pedestrian decision to cross the road is a function of some 
variables. Through statistical modeling, these parameters can be related to the response variable as 
demonstrated by Sun et al. (2000) and others. Due to the discrete nature of the process (1/0 = Y/NY or 
GO/NoGO) methods of categorical data analysis need to be applied. The decision of a driver to yield or of 
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the pedestrian to GO should be a function of the following types of variables: 

 Vehicle Dynamics: A yield is only feasible if a driver can reasonably come to a complete stop 
(hard yield) or delay his arrival at the crosswalk enough to allow for the pedestrian to cross 
(rolling yield). Parameters in this category include travel speeds, distance from the conflict 
area, and maximum (comfortable) deceleration rates for both drivers and pedestrians. These 
variables affect the arrival time of the vehicle and thereby also the pedestrian decision.  

 Vehicle and Driver Characteristics: These attributes describe things such as the ‘willingness’ 
of drivers to yield, driver courtesy, and the type of vehicle. 

 Pedestrian Characteristics: Pedestrian attributes include assertiveness, the presence of multiple 
pedestrians, or the willingness to accept risk. 

 Confounding Factors: In addition to the personal attributes above, the circumstances 
surrounding the interaction may impact the decision-making process. Examples include the 
presence of a downstream queue/congestion after the crosswalk or a yield event in the opposing 
direction or adjacent travel lane. Yielding behavior is also intuitively related to whether or not 
a vehicle is traveling in a platoon of vehicles. Similarly, pedestrians may be more willing to 
accept a shorter gap for an individual vehicle than a platoon. 

A study at two two-lane roundabouts in Maryland shows that the speed of the vehicle at the entry and 
exit of roundabouts significantly influences the driver yielding rate (Geruschat and Hassan, 2005). The 
authors found that 65% of the variability of driver yielding rate can be explained by speed. Based on their 
study, they estimated that the driver yielding rate with speeds lower than 15 miles per hour is about 75% as 
opposed to 50% with speeds higher than 20 miles per hour. In addition to the speed of the vehicle, they 
found that drivers yield to pedestrians at the entry 79% of the time as opposed to only 37% of the time at 
exit. The authors observed that pedestrian behavior influences the driver yielding rate. For example, the 
further the pedestrian is standing in the crosswalk the higher the likelihood of driver yielding. Drivers are 
almost twice as likely to yield to a pedestrian standing one foot in the crosswalk as one foot from the curb. 
Their study also shows that drivers have significantly higher yielding rates to pedestrians carrying a white 
cane (2.1 times higher at entry and 4.4 times higher at exit). 

A study by Salamati et al. (2012) showed that the likelihood of driver yielding at the entry leg of 
roundabouts is higher than exit. Drivers tend to yield to pedestrians with white canes more often than sighted 
pedestrians. Drivers traveling in the far lane, relative to pedestrian location, have lower probability of 
yielding to a pedestrian than drivers in the near lane. As the speed increases the probability of driver yielding 
decreases. At the exit leg of the roundabout, drivers turning right from the adjacent lane have lower 
propensity of yielding than drivers coming from other directions. The results show that factors such as 
vehicle platooning, downstream conflict (for only entry leg of the roundabout) and pedestrian waiting 
position, “at curb” versus “in crosswalk,” do not have a significant impact (with 95% confidence level) on 
the probability of a driver yielding to pedestrian. 

Summary of Behavioral Attributes 

This section described various aspects of pedestrian behavior and their interaction with vehicular traffic 
that should be considered in the development of microscopic algorithms for modeling pedestrians in 
simulation. In particular, pedestrian crossing behavior was discussed in terms of pedestrian path choice, 
pedestrian walking speed, and pedestrian compliance. The section further discussed aspects of pedestrian-
vehicle interaction with an emphasis on pedestrian gap acceptance and driver yielding behavior. In addition, 
it should be noted that pedestrian behavior could be different at multimodal facilities. The presence of 
transit alight maneuvers and bike traffic may make pedestrian crossing behavior much more complex.  

Table 21 provides a summary of the literature as it relates to pedestrian behavioral attributes and what 
studies have explored these attributes for the various facility types. Several gaps in the literature were 
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discovered that remain to be addressed. Research sources involving TWSC and AWSC intersections were 
not found in literature. Literature on pedestrian walking speed and path choice were only found for 
midblock locations. There is existing literature on compliance at single- and two-lane roundabouts, as well 
as midblock crossings, but not for channelized turn lanes. 
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Table 21: Summary of Existing Literature on Facility Types 

Type of Studies Facility Type 
Single-Lane 
Roundabout 

Two-Lane 
Roundabout 

Channelized 
Turn Lane 

Midblock 
Crosswalk 

Two-way Stop-
Controlled 
Intersection 

All-way Stop-
Controlled 
Intersection 

Pedestrian Gap Acceptance Ashmead et al. 
(2005),  
Schroeder and 
Rouphail (2011), 
Rouphail et al. 
(2005) 

Ashmead et al. 
(2005), 
NCHRP 674 

Schroeder, 
Rouphail, and 
Wall Emerson 
(2006) 

Schroeder and 
Rouphail 
(2011), Wang 
et al (2010), 
Ottomanelli et 
al (2011),  
Hunt et al. 
(2011), 
Schroeder 
(2008), 
Schroeder and 
Rouphail 
(2011) 

  

Driver Yielding NCHRP 672, 
NCHRP 674 

NCHRP 674, 
Geruschat and 
Hassan (2005), 
Salamati et al. 
(2013) 

NCHRP 674 NCHRP 674, 
Schroeder and 
Rouphail 
(2011),  
Fitzpatrick et 
al. (2006), 
Schroeder 
(2008), Sun et 
al. (2002) 

  

Pedestrian Walking Speed    Fitzpatrick et 
al. (2006), 
Ishaque and 
Noland (2007), 
Tarawneh 
(2001) 

  

Pedestrian Path Choice    Chu et al. 
(2002), 
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Dunn and Petty 
(1984), 
Ishaque and 
Noland (2008), 
Wang et al 
(2010), 
Schroeder et al. 
(2009), 
Sisiopiku and 
Akin (2003) 

Compliance (Pedestrian Delay) Schroeder and 
Rouphail (2010) 

RCOC (2011)  Havard and 
Willis (2011), 
Hunt el al. 
(2011), Chu et 
al. (2002), 
Schroeder et al. 
(2009) 
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Pedestrian Stream Models 
Early research on pedestrian movements focused on the pedestrians that did not interact with other 

modes of transportation. Modeling their movements required different approaches from methods that are 
applied to vehicles. There are three typical approaches to modeling pedestrians without consideration of 
vehicle interactions, namely discrete cellular automata, continuous force-based models, and macroscopic 
pedestrian stream models.  

The first is a discrete cellular automata approach, which segments the walkway into individual cells 
and assigns pedestrians to specific cells. Pedestrians move forward/backwards, left/right, or diagonally 
within the walkway in order to reach their destination. Conditional bounds are set so that pedestrians do not 
share the same cell. Lu et al. (2012) were able to replicate transient channelized flow that is observed in 
two-way walkways. Cellular automata models tend to require large amounts of memory when modeling 
larger areas (Blue and Adler, 200l, and Schadschneider, 2002). 

A second set of models are continuous force-based models of pedestrian movement. Pedestrians are 
motivated by social forces, including location, velocity, mass, direction, and repulsive forces of other 
pedestrians. These models are much more flexible in the types of conditions that can be modeled as 
obstacles of any size and shape which can be placed within the simulated walking space. This flexibility 
allows for these models to replicate complex scenarios, such as the evacuation of a building during an 
emergency. These models have limited application to pedestrian-vehicle interaction, but they may be 
relevant in replicating the decision-making process of each pedestrian in deciding when to cross as a 
function of the actions of other pedestrians in the vicinity. Force-based models tend to require large amounts 
of processing power when modeling larger areas and many pedestrians (Helbing and Molnár 1995, Chraibi 
et. al. 2009, Teknomo 2006, Toyama 2006). 

Finally, macroscopic pedestrian stream models are used that resemble typical traffic stream models. 
These models utilize parameters such as pedestrian space, speed, and flow per width. Effective width is 
used when determining the level of service for pedestrians, with common obstructions included that limit 
effective width. These models also allow for mixed use facilities that include bicycles (HCM 2010). 

Current Analysis Methods 

HCM Methods 

The Highway Capacity Manual 2010 provides three approaches to estimating the effects of pedestrian-
vehicle interaction. The first two, applicable at signalized intersections and free flowing approaches to 
unsignalized intersections, have clearly defined methodologies and relationships, while crossings at stop-
controlled approaches are assumed to have minimal delay to both pedestrians and vehicles. 

Signalized Intersections  

The method assumes that pedestrians cross during the walk and clear phases. The clearance interval is 
the time required to cross at an assumed pedestrian speed of 3.5 mph. The available Time-Space at each 
crosswalk is calculated and includes permitted lefts, right turns, and right turns on red (pedestrians yield to 
vehicles). Pedestrian delay is estimated for each crosswalk (major and minor). 

Unsignalized Intersections (Midblock and TWSC Major Street Crossings) 

Pedestrian methodologies were developed separately from the vehicle methodology and have different 
limitations. Up to 4 lanes can be crossed, 8 with a center median. Critical headway is used and pedestrians 
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can platoon. Driver yielding is included with a model for each of 1, 2, 3, and 4 lane crossings that considers 
likelihood of yielding, pedestrian gap acceptance and vehicle flow rates. Some field yielding rates are 
included with staged (told how to cross) and un-staged pedestrians. These models have not been empirically 
developed or calibrated to field observations. 

Unsignalized Intersections (AWSC) 

The HCM does not include pedestrians in the AWSC methodology as the methodology assumes that 
all vehicles will wait at the stop bar for pedestrians to cross. Though no methodologies are included, there 
is discussion on factors that may affect pedestrian delay including traffic volume, number of approach lanes, 
proportion of turning traffic, and pedestrian volumes. 

Microsimulation Methodologies 

The following is a list of possible microsimulation approaches to modeling pedestrian and vehicle 
interactions. The list includes examples of the approach applied in research where found and the type of 
crossing modeled.  

No Pedestrian-Vehicle Interaction 

Pedestrians do not interact with vehicles in the microsimulation tool. Pedestrians may be simulated 
separately without consideration to vehicles or not at all. 

Pedestrian Impedance on Vehicle Traffic 

Adjustments to saturated-flow of turning movements are based on pedestrian volumes. Vehicles yield 
to pedestrians, causing a restriction on the saturation flow rate (Alhajyaseen, et. al., 2012 and Rouphail and 
Eads, 1997). These models were applied at signalized crossings. 

All Yield/Signal Controlled 

Pedestrians cross only during protected phase at signalized intersections. Only interactions are during 
the pedestrian phase when permitted lefts or right turns interrupt pedestrian flow. Pedestrians yield to 
drivers at any conflict. This is analogous to a microsimulation implementation of the HCM signalized 
intersection methodology. 

Pedestrians as Small Vehicles 

Pedestrians follow standard vehicle gap-acceptance models using priority similarly to vehicle to vehicle 
interaction. The gap acceptance model may be calibrated to pedestrian characteristics. This methodology 
can be applied at signalized and unsignalized intersections (Yang, et. al., 2006). 

Cellular Automata 

The CA approach is applied with vehicles traveling perpendicular to pedestrians. In the model 
developed by Ottomanelli, the vehicle is first considered when entering the a calculated sight distance to 
the crossing, stops for pedestrians already in crosswalk, decides whether to yield for waiting pedestrians, 
and then crosses after yielding/not yielding. The model was calibrated at a midblock crossing near a college 
campus (Ottomanelli, et. al., 2012). 

Force-based Model 

While not well documented in the literature, it is theoretically possible to consider a force-based 
microsimulation of pedestrian-vehicle interactions where the social forces are defined separately for 
pedestrians and vehicles (Fellendorf, et. al., 2012). 
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Current Commercial Microsimulation Approaches to Pedestrian Modeling  

A sample of microsimulation packages were surveyed to determine if and how pedestrians and 
pedestrian-vehicle interaction are modeled. Table 22 shows current commercial microsimulation 
approaches to pedestrian modeling, along with the types of facilities modeled, where examples were found, 
and if parameters for varying pedestrian behavior are supplied. 

 

Table 22: Current Commercial Microsimulation Approaches to Pedestrian Modeling 

Simulation 
Tool/Package 

Pedestrian-Only 
Modeling 

Pedestrian-Vehicle 
Interaction 

Facility Types Pedestrian User 
Types Available 

CORSIM None Vehicle Impedance Model Signalized No 
VISSIM Force-Based Peds as Small Vehicles Both Yes- Gap Acc. 

AIMSUN None “Legion” Plug-in Both TBD 
PARAMICS TBD TBD Both Yes 
SimTraffic TBD TBD Both TBD 
HUTSIM TBD TBD TBD TBD 
Other?? TBD TBD TBD TBD 

Data Collection Approaches 

Background 

A scan of relevant literature revealed several research efforts that aimed at studying driver attitudes or 
pedestrian crossing behaviors. For obtaining data in such studies, three different data collection techniques 
have been adopted: observational, instrumented vehicle, and driving/pedestrian simulator approaches.  

Observational studies are the most traditional method employed in the collection of empirical driving 
and pedestrian behavior data. They can be used to obtain data from attributes that are fixed (such as vehicle 
type, pedestrian characteristics, geometric characteristics, etc.), those that change dynamically (e.g., vehicle 
speeds, pedestrian speeds, distance headways, traffic signal indications, etc.) as well as to record qualitative 
observations (such as driver or pedestrian distraction). Observational data are obtained from trained 
observers with the help of tally sheets, count boards, video surveillance equipment, and radar detection 
devices. 

Instrumented vehicles, on the other hand, permit quantitative assessments of driver performance in the 
field, under actual road conditions. These measurements are not subject to the type of human bias that 
affects inter-rater reliability on a standard road test. Moreover, the internal network of modern vehicles 
makes it possible to obtain information from the driver's own automobile, providing opportunities to study 
in depth driver strategy, vehicle usage, upkeep, drive lengths, route choices, and decision-making (Rizzo et 
al., 2002). The instrumentation enables researchers to record driver characteristics and vehicle operational 
parameters. Driver characteristics include galvanic skin response, heart rate, and muscle activity. Examples 
of vehicle operating characteristics that can be gathered using an instrumented vehicle include steering 
motion, braking actions, speed, distance and tri-axial accelerations (Helander and Hagvall, 1976). Figure 
33 shows a typical instrumented vehicle with relevant connections. 
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Figure 33: Typical Instrumented vehicle (Helander and Hagvall, 1976) 

Laboratory simulators can also be employed to assess behavior in response to synthetic reality. Driving 
simulators make it possible to observe driver behavior in controlled environments without the risk of driving 
on the road. It offers a cost-effective alternative to real world naturalistic studies and allows for independent 
variables to be systematically manipulated so that driver behavior can be measured precisely and safely 
(Rizzo et al., 2002). Since their introduction in the 1960s they have undergone many advances in terms of 
computing, visual display, and vehicle dynamics capabilities (Rudin-Brown et al., 2002). Even the lower 
fidelity simulators are able to collect vast amounts of data, which is one of their reported advantages over 
naturalistic investigative methods (Moroney and Lilienthal, 2009). Typical dependent measures of driving 
performance that are collected in driving simulation research studies include vehicle speed, acceleration, 
braking reaction time, lane position, etc. Similar to the driving simulators, pedestrian simulators also exist 
that can be used to study pedestrian behavior in controlled environments. 

Data Collection Studies 

Observational  

Observational data collection methods are widely employed in pedestrian behavior analysis. They are 
leveraged for manifold purposes; a few examples include crash analysis, en-route choice modeling, and 
assessment of level of service for various facilities. A cursory note of these methods indicate either direct 
observation approach or video recording based approach as the major means to collect data. Many of the 
research efforts introduced in Section 3 used observational methods to collect data for studying pedestrian 
crossing attributes (such as pedestrian crossing speed and pedestrian compliance) as well as pedestrian 
vehicle interactions (such as gap acceptance, and driver yielding behavior) for a variety of users and 
crossing types.  

In other studies, Zeedyk and Kelly (2003) used unobtrusive observations of 123 adult-child pairs at 
pedestrian crossings to model the adult-child crossing behavior. Eight types of maneuvers were considered 
in this study: crossing within the confines of the crosswalk, curb stoppage, oral instruction from adult to 
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child, pressing the button for pedestrian signal, checking for traffic emerging from either direction before 
initiating crossing, holding hands during crossing, and walking/running (child). Fischer’s exact chi-square 
was used to compare the observations (Zeedyk and Kelly, 2003). 

Hatfield and Murphy (2007) investigated the effect of mobile phone usage on crossing speed of 
pedestrians based of field observation data. The study group comprised of 270 females and 276 males. Both 
genders were observed to walk slowly when using a mobile phone during crossing. Females were found to 
be more likely to not look at the traffic before starting a crossing maneuver (Hatfield and Murphy, 2007). 

Overall, observational data collection methods require minimal investment in equipment, allow for 
direct observation of natural pedestrian crossings and driver decision making, and provide first source 
information to calibrate simulation models. The main shortcoming is the lack of control to cover a specific 
range of parameters as part of the experiment and isolate others that may bias the data sample. 

Instrumented Vehicle 

The review of the literature confirms that the use of instrumented vehicles to gather driver behavior 
measures in the context of driver-pedestrian interaction has gained little attention as of now. Still, studies 
that utilized instrumented vehicles for gathering driving behavior data can provide some useful insights on 
experimental design, resource requirements, advantages and limitations. 

For example, a study by Boyce and Geller (2000) conducted experiments using instrumented vehicles 
to assess risky driving behavior. The participant group comprised of 61 licensed drivers with ages ranging 
from 18 to 82 years. They were paid $10 per hour for participation in the study. The participants were 
distributed in three groups: younger, middle aged and older. The risky behavior was assessed by means of 
speeding, on-task behavior, turn-signal use, and following distance (Boyce and Geller, 2002). A study by 
Rizzo et al. (2002) used instrumented vehicle to collect data for the assessment of fitness and know-how of 
diverse young and old driving population and develop objective measures to distinguish normal and 
potentially unfit drivers (Rizzo et al., 2002). 

Other research efforts used instrumented vehicles to study driver distraction. For example, an 
experiment by Texas Transportation Institute (TTI) tried to describe driver behavior under distraction using 
an instrumented vehicle. The experiment had three tasks, control, reading and writing, on which the driver 
performance was evaluated. Upon acquaintance with test driving conditions, they were sent two stories via 
MMS for reading and a short story to be written. Using in-vehicle instrumentation and Psychopy data 
collection software, data related to speed, lateral lane position, steering, brake, accelerator, light response 
times, and reading/texting rates were gathered. Some of the major observations of the study include lower 
mean speed than posted speed while texting and difficulty in maintaining lane discipline while texting 
(Cooper et al., 2011). 

Driving Simulators  

Another widely used approach to evaluate driver behavior is using driving simulators. However, there 
are not many instances where driving simulators were used to examine driver behavior with pedestrian 
crossing stimulus. In a relevant study, Pradhan et al. (2005) researched the yielding propensity of drivers at 
mid-block crossings using a driving simulator. The participants were grouped in novice drivers (16-17 
years), young drivers (19-29 years), and older drivers (60-75 years). Each group had 24 participants. The 
position of vehicle, velocity and point of driver’s gaze were recorded. The stopping propensity and eye 
movement were used for developing indices of safe driving behavior. Some scenarios presented to drivers 
included right turn with walk signal, an intersection with hidden sidewalk, and truck parked in front of 
sidewalk (Pradhan et al., 2005). 

In another study, Fisher and Garay-Vega (2012) conducted simulator based experiments for assessing 
driver behavior in sight limited, multi threat scenarios. The subjects were divided into two groups, each 
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comprising of 18 in number. The subjects were paid $20 for participation in the experiment. A fixed base 
Saturn Sedan was used as the simulator vehicle and three screens with 150° horizontal and 30° vertical 
vision were used in the experiment. The simulator was equipped with audio input. The study assessed the 
likelihood that sight limited drivers who were presented with a multi threat scenario would skim for 
pedestrians in the expected zone. The likelihood of yielding at the last minute appearance of pedestrian on 
provision of advance yield signage was also assessed. The experiment recorded whether or not the driver 
identified the target zone, crosswalk time upon locating a pedestrian, and percentage of vehicle yielding 
(Fisher and Garay-Vega, 2012). 

Edquist et al. (2012) investigated the effects of on street parking and visual complexity associated with 
the roadside environment on speed and reaction time. A low complexity and a high complexity scenario 
with different curb side parking assumptions were assessed in the simulator. The participant group 
comprised of 29 drivers, 15 of which were male. The ages of the study subjects varied from 20 to 53 years. 
They were paid $30 for their time. Upon unexpected sight of pedestrian event, variables such as time to 
accelerator release, time to brake, minimum distance, minimum time to collision, and number of collisions 
were recorded and evaluated (Edquist et al., 2012). 

Hazard perception of elderly drivers and experienced drivers in regards to pedestrian presence was 
compared using two different approaches by Bromberg et al. (2012). They compared the response to a 
traffic scene video against the response in a driving simulator. The participants were divided into two 
groups, experienced (28-40 years) and elderly experienced drivers (65 and above). The first group consisted 
of 22 participants and the second one with 20 participants. The participants had different visual acuity 
profiles ranging from 6/6 to 6/12. Participants were paid $15 for their participation (Bromberg et al., 2012). 

The validity of a driving simulator, in terms of its ability to reliably measure a given aspect of driving 
performance, depends on a number of factors associated with physical validity (simulator “fidelity”) and 
behavioral validity (Rudin-Brown et al., 2009). The choice of whether to use a driving simulator should be 
based on whether the simulator is sufficiently valid for the specific task or behavior under investigation 
(Kaptein et al., 1996). 

Pedestrian Simulators  

Charron et al. (2012) used a pedestrian simulator to gauge the risk taking behavior in child pedestrians. 
In this study, 80 children with median age of 10 years took the simulator test that requested subjects to 
maneuver the crosswalk. The experiment design consisted of reaching two targets (mailbox, cinema) one 
after another within a 3 minute timeframe. The targets were connected in such a way that it will take greater 
time to reach the targets by crosswalk usage. Variables recorded in this study include the subjects’ decision 
to use the crosswalk or not, to walk or run, and to observe the vehicles while crossing (Charron et al., 2012). 

Several studies point to marked differences in pedestrian crossing behavior based on age, able bodied 
condition, or crossing in groups. For instance, Simpson et al. (2003) used a virtual reality system to 
investigate the differences in crossing behavior between children and young adults. The study comprised 
of 24 participants equally distributed in the following age groups: 5-9, 10-14, 15-19, and >19 years. Each 
age group had equal number of male and female participants. The youngest age group was found to make 
the most unsafe crossings. The system collected collisions, tight fits (potential collisions with vehicle less 
than 1.5 s away from pedestrian), time headway, and rejected gaps for each crossing maneuver (Simpson 
et al., 2003). 

Several studies reported use of pedestrian simulators to study behavior of subjects (especially young 
adults) crossing the street with potential distraction due to multimedia devices. A study by Schwebel et al. 
(2012) found small but meaningful impacts caused by distraction due to multimedia devices. The participant 
group consisted of 138 college students subjected to cross a virtual street. The participants were randomly 
assigned to three distinct groups with distraction: talking on phone, texting, listening, with a fourth group 
without any of these distractions. The variables recorded to model the distraction included elapsed time 
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after pedestrian finished the crossing maneuver and arrival of next vehicle in the crosswalk, left/right 
observation, looking away, hit instances, and missed crossing opportunities (Schwebel et al., 2012). 

Summary of Data Collection Options 

Among the existent data collection alternatives, nature of study and available resources govern the 
choice of preferred alternative. Preliminary findings from literature review shows some advantages related 
to simulator based data gathering techniques for modeling driver and/or pedestrian distraction. However, 
the development of experiments appropriate to realistically model pedestrian/vehicle interactions for a wide 
range of users and facility types is a complex and expensive proposition. 

The instrumented vehicle technique renders valuable insights in driver behavior analysis and can be 
effectively utilized in controlled experiments to study driver yielding behavior associated with pedestrian 
presence. However, they cannot provide insights about pedestrian gap selection, which is an important 
element of our work. 

Field observational studies, on the other hand, allow for observation of naturally occurring pedestrian 
crossings as well as driver actions in a coordinated fashion. Such studies allow observation of vehicle type, 
pedestrian type, gap size, pedestrian-vehicle conflicts etc. as well as gathering of data for determining the 
percentage of driver yielding, average observed speeds, pedestrian delay, and other variables important for 
the development of behavioral models for drivers and pedestrians in our study. 
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APPENDIX B: MIDBLOCK CROSSING STUDY  

Data Collection Methodology 

The team proposes to collect a variety of empirical data on pedestrian-vehicle interaction. Some of these 
data will be related to attributes that are changing dynamically (e.g. vehicle speed, vehicle relative 
distance to the crosswalk), while others will be static descriptors of the pedestrian-vehicle interaction 
event (e.g. vehicle type, pedestrian characteristics). To evaluate the effect of these variables, they need to 
be collected accurately using reliable measurement devices. They also need to be coded consistently 
between crossing events, sites and locations.  In this data collection methodology, the temporal beginning 
of an interaction event is defined as follows:  
 

A pedestrian-driver interaction event commences as a pedestrian arrives in the crosswalk influence 
area (CIA) or waiting location while a driver is on the approach of the crosswalk.  

 
All interaction variables will be coded relative to this point in time, and the methodology assumes that the 
following statements are true:  

 The pedestrian has indicated that he or she is intending to cross at the facility (rather than 
continuing along the sidewalk). 

 The pedestrian is aware of the approaching vehicle and decides whether or not he or she feels 
comfortable to cross the road. 

 The driver is aware of the pedestrian’s intention and must react in some fashion (make the 
decision to yield or continue through the crosswalk). 

 The observer is aware that an event sequence (action-reaction) is about to take place (from video 
observation) and records the attributes of the interaction event. 

The assumptions above are valid if both driver and pedestrian are consciously aware of each other’s 
presence. Clearly, there are cases where that is not true, as driver or pedestrian may be distracted. In an 
observatory study the cognitive awareness of the involved parties is not discernible, but can only be 
presumed from erratic or unexpected behavior. For example, a pedestrian may step into the roadway and 
then retreat quickly, realizing that he or she misjudged the position of the vehicle. Similarly, a driver may 
perform an emergency braking maneuver after belatedly recognizing the presence of the pedestrian. In the 
case of a pedestrian retreating, this event should be coded as a separate event.  Speed and other vehicle 
dynamics would be recorded and a note would be made such as “pedestrian pull-back”. 
 
From the onset of a pedestrian-driver interaction event, there are three potential outcomes to the 
interaction of the two modes:  
 

1. Pedestrian GO Decision [GO] – The pedestrian decides that there is sufficient time for a safe 
crossing and steps into the crosswalk.  

2. Pedestrian NO-GO Decision [NOGO]/ Driver Non-Yield Decision [NY] – The pedestrian decides 
that the time until the expected vehicle arrival time to the crossing point is too short to safely 
cross the facility, i.e. he/she rejects the lag or gap. At the same time, the driver decides that it is 
either physically impossible to yield to the pedestrian, or he/she is unwilling to yield.  

3. Driver Yield Decision [Y] – The approaching driver decelerates and creates a crossing 
opportunity for the pedestrian, which may occur with or without coming to a complete stop.  
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The team proposes to use a three-pronged data collection approach that combines real-time observations 
by a trained observer on a tally sheet, video recording of the crosswalk, and Lidar speed measurements of 
approaching vehicles. Figure 34 shows a schematic of the data collection set-up.   
 

 
Figure 34: Proposed Field Data Collection Set-Up 

 

In order to capture all relevant data, the video angle has to cover events concurrent to the interaction, such 
as the presence of an adjacent yield or multiple pedestrians. As shown in the diagram, the video camera 
angle is wide enough to cover the crosswalk influence area (CIA) or waiting location, and the approach to 
the crosswalk. The speed recordings from Lidar need to be visible on the video camera and to the field 
observer, or alternatively need to be recorded audibly on the video. This setup will also allow us to record 
“illegal” pedestrian crossings in the immediate vicinity of the pedestrian crossing.  These will also be 
analyzed and considered within the broader context of replicating pedestrian crossings along various 
types of facilities and for various types of crossings.    
 

The heading of the data collection sheet provides the date/time, observer(s), distance to crosswalk (dist. to 
CW), intersection, approach, and crossing distance.  The entire distance must be visible in the video, so 
that walking speed may later be calculated using this distance and the crossing time (TIME on the data 
collection sheet).  Average speed should also be calculated from unimpeded speeds at each location.  
These can be done by collecting speeds and distances for vehicles where the speed is not affected by 
pedestrians or platoons.  Record these speeds and distances (for a sample of 30 vehicles) on a separate 
sheet of paper or along the edge of the data collection sheet.  The following table summarizes all data 
collection elements used in determining the driver yielding behavior, followed by some additional details 
on variable definitions.  Additional variables were needed to determine gap acceptance behavior and will 
be discussed later.  It was discovered that adding a column in excel for the time stamp (and another for 
the file name, when video spans several files) from the video would help identify each observation. 
 

Data Collection Manual 

Table 23: Data collection measures obtained and used in modeling 

 Factor Description Value 
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SPD The speed of the first vehicle (mph), at the time the pedestrian 
arrives at crosswalk influence area (waiting location), recorded 
from speed gun 

Mph 

DIST The distance from the first vehicle to the researcher recorded 
from the laser speed gun 

Ft 

YIELD Whether the first vehicle yielded and if it was a hard or soft 
yield 

No=NY, Soft= 
SY, Hard=HY 

Camera
Speed GunCIA
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NEAR Whether the vehicle for which speed and distance was 
recorded (first vehicle) was in the lane nearest or farthest from 
the pedestrian 

Near=1, Far=0 

TRIG If the first vehicle yielded, was it triggered (forced) by the 
pedestrian. In other words, if the yield happened before 
pedestrian stepping into the crosswalk (0) or after (1) 

Triggered Yield, 
Yes=1, No=0 

STP Whether the first vehicle had already stopped at the time that 
the pedestrian arrived  

Stopped=1 

ADJ Whether there was a yield on the other side of the road 
(opposite direction) or a yield in an adjacent lane (same 
direction) 

Adj. Yield=1 

PLT If the first vehicle was in a platoon or had a close follower Platoon=1 

LSPLT If the first vehicle was in a platoon or had a close follower and 
was travelling at a speed less than or equal to 15 mph 

Low-speed 
Platoon=1 

HGV First vehicle type: passenger car or heavy vehicle (bus or 
truck) 

Heavy Vehicle=1 

P
ed

es
tr
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n 

V
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MUP If there were other pedestrians present near the crosswalk; if 
any pedestrian is at either sides of the street or the splitter 
island and intends to cross 

Multiple 
Pedestrian=1 

MED Whether the pedestrian crossed from the median or the curb Median=1, 
Curb=0 

CTRL Whether the crossing pedestrian was controlled (researcher) or 
random (observational study) 

Controlled=1, 
Random=0 

CROSS Whether the pedestrian crossed in a gap or a yield Gap/Yield (G/Y) 

IN_CW Whether the pedestrian stopped in the crosswalk or at the curb. 
This variable shows the behavior of the pedestrian. A passive 
pedestrian is defined to wait at the curb for a crossing 
opportunity however an assertive pedestrian is defined to be 
waiting in the crosswalk or walking toward the crosswalk 

Crosswalk=1, 
Curb=0 

AGE Researcher’s estimate of the pedestrian’s age group Young=1, 
Middle/Older=0 

DISTR Whether the pedestrian was distracted by an outside source, 
such as a cell phone 

Distracted, 
Yes=1, No=0 

BUSINESS Researcher’s observation of the pedestrian’s attire or clothing Business=1, 
Casual=0 

FEMALE Pedestrian’s gender Female=1, 
Male=0 

S
it

e 
V

ar
ia
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es

 

CAMPUS This variable distinguishes sites on-campus (1) from those off-
campus (0) 

On-Campus=1 

FLORIDA This variable distinguishes sites in the state of Florida (1) from 
those in the other two states (0) 

Florida=1 
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NCAROLINA This variable distinguishes sites in the state of North Carolina 
(1) from those in the other two states (0) 

North Carolina=1 

Distance to 
Crosswalk 

The distance from the researcher using the laser speed gun to 
the middle of the crosswalk along the curb. 

Ft 

Crossing 
Distance 

The distance from the curb to a measured location, such as a 
specific white crosswalk marking, a center line, or the opposite 
side of the crosswalk. 

Ft 

O
th

er
 COUNT If the first vehicle did not yield, how many vehicles went 

through before the pedestrian crossed 
Number 

V
id

eo
 

DIST_DEL Delay between when the speed should have been taken (at the 
time pedestrian arrives at the waiting location) and when the 
gun beeped 

Seconds 

ADJDIST Vehicle position at the time of pedestrian arrival in crosswalk 
influence area measured in feet using a LIDAR speed 
measurement device; ADJDIST is calculated from measured 
distance, speed, distance delay and Distance to Crosswalk; 
ADJDIST=DIST+SPD*1.467*DIST_DEL-Distance to 
Crosswalk 

Ft 

TTC Time until vehicle would theoretically arrive at the crosswalk; 
TTC is calculated from the measured speed and distance at the 
time pedestrian arrives in the crosswalk influence area; 
TTC=ADJDIST/(SPD*1.467) 

Seconds 

DECEL Deceleration rate necessary to come to a full stop prior to 
crosswalk; DECEL is calculated from measured speed and 
adjusted distance; DECEL=(SPD*SPD)/(2*ADJDIST) 

Ft/s2 

 
Factors in Further Detail 

PLT: If the first vehicle was in a platoon or had a close follower (Platoon=1) 

 It is predicted that if the first vehicle is part of a platoon, they are less likely to yield 
 The platoon should happen upstream, not right at the crossing 
 What distance between vehicles is considered a platoon? (The following two examples were 

considered as platoons) 
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HGV: First vehicle type, passenger car or heavy vehicle (bus or truck) (Heavy Vehicle=1) 

The following are NOT considered heavy vehicles: 

     

MUP: If there were other pedestrians present near the crosswalk; if any pedestrian is at either sides of the 
street or the splitter island and intends to cross (Multiple Pedestrian=1) 

Question: When the first pedestrian has already crossed one direction and is crossing the opposite 
side of the road, the second pedestrian arrives. Should it be considered as MUP=1, if the driver of 
the vehicle may not consider it as a pedestrian group and has already moved forward? 

Response: For the condition of multiple pedestrians, we count any pedestrian that intends to cross 
from any directions or side of the street. So this case is a MUP=1. The pedestrian (other than our 
subject pedestrian) could be crossing the studied direction or opposite direction.  

IN_CW: Whether the pedestrian stopped in the crosswalk or at the curb. This variable shows the behavior 
of the pedestrian. A passive pedestrian is defined to wait at the curb for a crossing opportunity however 
an assertive pedestrian is defined to be waiting in the crosswalk or walking toward the crosswalk 
(Crosswalk=1, Curb=0) 

Question: If there is a big gap when a pedestrian arrives at the crosswalk, and he/she just walked 
across, should it be considered as an aggressive one (IN_CW=1)?  In this condition, what if 
his/her walking speed is very low? 
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Response: If the gap is really large and does not require the driver of the vehicle to brake or slow 
down, the condition is not aggressive (IN_CW=0). But if the pedestrian walks fast to utilize the 
gap in traffic and/or vehicle slows down to increase the headway the pedestrian behavior is 
aggressive (IN_CW=1). 

W_SP: Pedestrian walking speed while crossing. 

Walking speed can be calculated in excel using the following formula: 

/  

Crossing distance should be entered in the header, while TIME would be entered into the 
preceding column. 

DELAY: Time from the pedestrian arriving at the crosswalk influence area (waiting location) to stepping 
into the crosswalk to cross (recorded in seconds) 

 Where does delay start? 

 

Gap Acceptance 

Several additional variables are needed to adequately explain pedestrian gap acceptance behavior.  These 
variables may be added as new columns in the excel spreadsheets, to the right of DIST_DEL.  The table 
below shows the additional variables.  A lag event is defined as occurring between a pedestrian who has 
just reached the crosswalk and the next vehicle to arrive at the crosswalk.  A gap event occurs between 
successive vehicles while a pedestrian waits at the crosswalk. 

Table 24: Additional data collection elements used in determining the gap acceptance behavior 

Factor Description Value 

GO Whether the pedestrian accepted (GO) or rejected (No-GO) a gap/lag 
event. 

GO=1, No-
GO=0 

LAG Whether the pedestrian event is a lag or gap Lag=1, 
Gap=0 
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TIME Time from the pedestrian stepping into the crosswalk to reaching a 
measured location (such as a specific white crosswalk marking, a 
center line, or the opposite side of the crosswalk). This value is used in 
calculating the pedestrian walking speed. 

Seconds 

W_SP Pedestrian walking speed while crossing Ft/s 

OBS Observed lag or gap time, measured with a stopwatch between 
pedestrian and vehicle arrival (lag) or successive vehicles (gap) 

Seconds 

DELAY Time from the pedestrian arriving at the crosswalk influence area 
(waiting location) to stepping into the crosswalk to cross 

Seconds 

 
These variables will not have values for all observations and some observations may require additional 
rows.  The first part is true for soft and hard yields, since the driver decided to yield to the pedestrian.  It 
is not true for triggered yields, because the pedestrian utilized what they saw as an acceptable gap size.  
Crossing events that were listed as gaps under the pedestrian variable CROSS will have at least one 
observation.  Gap crossings with vehicle count values greater than zero may require additional rows to 
account for the rejected gaps, in addition to the accepted gap. 
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APPENDIX C: DESCRIPTION OF THE INSTRUMENTED VEHICLE 
STUDY 

Instrumented Vehicle Description 
The instrumented vehicle used in this study is a Honda Pilot SUV, owned by the University of Florida – 
Transportation Research Center (TRC). The vehicle is equipped with a Honeywell Mobile Digital Recorder 
(HTDR400) system. The vehicle has an inbuilt GPS where all information about vehicle position and speed 
data is displayed and recorded on the HTDR400. In addition to the GPS unit, the vehicle includes four wide 
coverage digital cameras (DCs) that capture video clips facing the front, the back and the two sides of the 
vehicle. The video data, as well as audio data during the driving task, are recorded on the HTDR400, and 
stored at a local hard drive that is located at the trunk of the vehicle. An additional camera facing the driver 
will be installed on the dashboard, to capture possible facial reactions of the driver during the experiments, 
and to record the participant’s comments while driving. An internal view of the instrumented vehicle is 
provided in Figure 35. The data that can be collected directly through the instrumented vehicle include: 
Instrumented vehicle geographical position, speed, throttle, and left-right turn signal activation, Video clips 
of the vehicles in front, behind and adjacent to the instrumented vehicle, Audio and video recordings of the 
participant during the driving task. 
 
A laptop is connected to the system which allows for reviewing the display of all four cameras, through the 
HTRD BusView software. It is also possible to download the video clips from the hard drive to the laptop. 

 
Figure 35: Inside View of the TRC Instrumented Vehicle 

 

Instrumented Vehicle Study Route Descriptions 
Route Description 

Route #1:  
1.  Start from the parking lot, go south along Gale Lemerand Dr. 

2.  Turn right to Museum Rd. 

3.  Turn right to Radio Rd. 

4.  Turn left to SW 34th Rd. 

5.  Turn left to Hull Rd. 
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6.  Turn left to Mowry Rd. 

7.  Turn left back to Gale Lemerand Dr. 

8.  Proceed back to the parking lot across the football stadium on the left side. 

Total length: 4.7 mile. Total duration: Approximately 16 min. 

Route #2:  
1.  Start from the parking lot, go south along Gale Lemerand Dr. 

2.  Take the 1st left to Stadium Rd. 

3.  Continue to Buckman Dr. 

4.  Turn right to Union Rd. 

5.  Take the 1st right to Newell Dr. 

6.  Turn right to SW Archer Rd. 

7.  Take the 1st right to Center Dr. 

8.  Take the 3rd left to Museum Dr. 

9.  Turn right back to Gale Lemerand Dr. 

10. Proceed to the parking lot across the football stadium on the left side. 

Total length: 2.8 mile. Total duration: Approximately 20 min. 
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APPENDIX D: YIELD MODELING DETAILED RESULTS 

Predicting Probability of Yielding, P(Yield) 
Correlation Table (Y vs. NY) 

The following table shows a correlation analysis of the response variable (Y_NY = 1 for yield events), as 
a function of various independent variables. Each cell contains the correlation coefficient (ranges from -1 
to +1) in the top row, and the p-value of the Chi-Square correlation test in the second row.  

Table 25: Probability of Yielding Correlation Table 

 

 The following variables show a significant positive correlation with the dependent variable, 
suggesting an increase in yielding with an increase in the variable (or binary variable change from 
0 to 1): ADJ, PLT, MUP, MED, TTC, AGE, and FEMALE 

 The following variables show a negative or inverse correlation (<-0.3) with the dependent 
variable, suggesting a decrease in yielding with an increase in the variable (or binary variable 
change from 0 to 1): SPD, NEAR, CTRL, DECEL, and BUSINESS 

 The following variables are intercorrelated: ADJDIST to TTC (0.70652), NEAR to MED (-
0.54721), MUP to CTRL (-0.48996), TTC to DECEL (-0.55213) 

 It is expected that ADJDIST, TTC, and DECEL are intercorrelated since TTC and DECEL are 
calculated using the ADJDIST 
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Binary Logit (Y vs. NY, full model) [Y-1] 

Table 26: Yield Model Y-1 Results 

  

 AIC (1078.595), SC (1156.714), -2 Log L (1046.595), R-Square (0.2591), Max-rescaled R-
Square (0.3470) 

 This model shows the following variables to be significant: SPD, ADJDIST, NEAR, ADJ, HGV, 
MUP, MED, TTC, AGE, and BUSINESS 

 The following variables are shown to be insignificant: PLT, CTRL, DECEL, DISTR, FEMALE 
 Only 10 of the 975 observations involved a distracted pedestrian, so this variable should not be 

used in further modeling. 
 It is expected that forward selection and backward elimination will show the same variables to be 

significant and insignificant. 
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Binary Logit (Y vs. NY, forward selection) [Y-2] 

Table 27: Yield Model Y-2 Results 

  

 AIC (1073.611), SC (1127.318), -2 Log L (1051.611), R-Square (0.2553), Max-rescaled R-
Square (0.3418) 

 Reasonable that these factors affect yielding decision in the manner shown 
 Increased speed reduces chance of yielding. Heavy vehicles are less likely to yield. Drivers are 

less likely to yield to pedestrians in business attire. Increased time to contact also reduces chance 
of yielding. 

 Driver distance from crosswalk, driver in near lane, adjacent yield, presence of multiple 
pedestrians, pedestrian crossing from median (pedestrian in refuge or already crossing from 
opposite side of street), and student age pedestrians increase the chance of yielding 

 It was somewhat unexpected that pedestrians in business attire reduce the chance that a driver 
decides to yield and student age pedestrians increase the chance of yielding. This may reflect a 
difference in driver behavior by location, since pedestrians in business attire are more likely to be 
found in downtown areas and students are seen on-campus. A campus variable will be explored in 
a future modeling step.  

 These variables were shown to be insignificant: PLT, CTRL, DECEL, FEMALE 
o It was seen in previous research that driver yielding at roundabouts is affected by 

platoons, with vehicles traveling in platoons being less likely to yield. It is therefore 
somewhat surprising that the effect did not show up at the studied midblock sites. In the 
full model, the PLT variable had a p-value of 0.1136 and an odds ratio of 1.293, which is 
not significant and further in the opposite direction than expected.  

o Control being insignificant means that staged pedestrians can be used in research, we are 
not forced to rely on natural pedestrian observations 

o Necessary deceleration does not show up, but speed, adjusted distance, and time to 
contact were shown to be significant. With these variables already in the model, required 
deceleration showed less of an effect than if it had been forced into the model 

o It was expected that the gender of the pedestrian would not have an effect on the driver’s 
decision to yield or not 
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 Backward elimination shows the same results as forward selection. This was expected to occur, 
but sometimes forward and backward selection produce slightly different results – especially 
when independent variables are inter-correlated (like TTC and DECEL). 

Binary Logit Manual Selection 1 (Y vs. NY, TTC removed) [Y-3] 

In the model, the team manually selected variables to add to the model. The variable selection was 
motivated by the ability to implement this model into a microsimulation environment, which is the 
primary objective of this project. The team therefore explored different model combinations that could 
more readily be implemented. In this first attempt, only the SPEED and ADJDIST variables were used, 
and the interaction variable TTC excluded.  

Table 28: Yield Model Y-3 Results 

  

 AIC (1075.208), SC (1124.032), -2 Log L (1055.208), R-Square (0.2525), Max-rescaled R-
Square (0.3382) 

 It was seen that removing TTC (a variable that was intercorrelated with ADJDIST and DECEL) 
from the model only affected the statistics, coefficients, and p-values by small amounts.  

 The following variables were shown to be insignificant in the previous models, so they were not 
used in this model: PLT, CTRL, DECEL, FEMALE 

 The following variables were used and determined to be significant: SPD, ADJDIST, NEAR, 
ADJ, HGV, MUP, MED, AGE, and BUSINESS 

 Increasing the speed reduces chance of yielding. Heavy vehicles are less likely to yield. Drivers 
are less likely to yield to pedestrians in business attire. 

 Driver distance from crosswalk, driver in near lane, adjacent yield, presence of multiple 
pedestrians, pedestrian crossing from median (pedestrian in refuge or already crossing from 
opposite side of street), and student age pedestrians increase the chance of yielding 

 Pedestrians in business attire reduce the chance that a driver decides to yield and student age 
pedestrians increase the chance of yielding. This may reflect a difference in driver behavior by 
location, since pedestrians in business attire are more likely to be found in downtown areas and 
students are seen on-campus. 
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Binary Logit Manual Selection 2 (Y vs. NY, SPD and ADJDIST removed) [Y-4] 

In this second manual selection model, the team removed SPD and ADJDIST, and instead only used the 
TTC variable. The objective is that the TTC variable more directly describes the time to arrival at the 
crosswalk, making the case that the interaction of the speed and distance variables is critical in predicting 
yields.  

Table 29: Yield Model Y-4 Results 

  

 AIC (1150.536), SC (1199.360), -2 Log L (1130.536), R-Square (0.1925), Max-rescaled R-
Square (0.2578) 

 It was seen that removing SPD and ADJDIST (ADJDIST was intercorrelated with TTC and both 
of these variables are used to calculate TTC) from the model affected the statistics, coefficients, 
and p-values by larger amounts than removing TTC. The overall model fit decreased notably, 
suggesting that the individual parameters are needed in the model. 

 The following variables were shown to be insignificant after the removal of the SPD and 
ADJDIST variables, so they were not used in this model: PLT, HGV, BUSINESS 

 It was seen that after removing these three variables that TTC is no longer shown to be 
significant. It is recommended that SPD and ADJDIST be kept in the models and TTC be 
removed. 
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Binary Logit (Y vs. NY, NC data only) [Y-5] 

In the next step, a separate model for NC data only was developed using forward selection. 

Table 30: Yield Model Y-5 Results 

  

 AIC (314.133), SC (333.005), -2 Log L (304.133), R-Square (0.2272), Max-rescaled R-Square 
(0.3248) 

 Sample Size: 93 Yields and 229 Non-yields 
 The following variables were determined to be significant: SPD, MUP, MED, and AGE. 

Increasing speed reduces the likelihood of yielding, while multiple pedestrians, a crossing from 
the median, and a student increase the likelihood of yielding.  

Binary Logit (Y vs. NY, FL data only) [Y-6] 

In the next model, only the Florida data were used in model development.  

Table 31: Yield Model Y-6 Results 

  

 AIC (272.796), SC (291.315), -2 Log L (262.796), R-Square (0.1834), Max-rescaled R-Square 
(0.2779) 

 Sample Size: 231 Yields and 69 Non-yields 
 The following variables were determined to be significant: SPD, PLT, DECEL, and FEMALE. 

Increasing speed and increasing necessary deceleration rates decrease the likelihood of yielding, 
while platoon and female increase yielding. 

 The PLT effect is surprising, as platooned vehicles have previously been shown to be associated 
with a decrease in yielding – presumably due to an increased risk of rear-end collisions. Seeing 
more yielding for platoons is counterintuitive.  
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Binary Logit (Y vs. NY, AL data only) [Y-7] 

In the following model, only the data from the Alabama sites was used in model development.  

Table 32: Yield Model Y-7 Results 

  

 AIC (327.088), SC (354.153), -2 Log L (313.088), R-Square (0.2916), Max-rescaled R-Square 
(0.4117) 

 Sample Size: 108 Yields and 245 Non-yields 
 The following variables were determined to be significant: SPD, ADJDIST, NEAR, ADJ, CTRL, 

and TTC. Higher speed decreases the likelihood of yielding, as do CTRL and TTC. The CTRL 
effect means less yielding to the experimenter, which may be the sign of some bias in the 
experiment. The TTC effect is opposite from the team’s expectation, as greater TTC should lead 
to more yielding! 

 ADJDIST, NEAR, and ADJ all increase the likelihood of yielding, which is as expected.  

It can be seen above that each state shows different variables to be significant. Two dummy variables 
were then created, one with FLORIDA = 1 and one with ALABAMA = 1. The yielding in Florida and 
Alabama will thus be estimated relative to North Carolina. 
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Binary Logit (Y vs. NY, On-campus data only, forward selection) [Y-8] 

In this next model, only the on-campus data were used in the model development. The results below show 
the forward selection model.  

Table 33: Yield Model Y-8 Results 

  

 AIC(479.760), SC(512.634), -2 Log L (578.249), R-Square (0.2246), Max-rescaled R-Square 
(0.3105) 

 Sample Size: 296 Yields and 154 Non-yields 
 The following variables were determined to be significant: SPD, ADJ, PLT, HGV, MUP, MED, 

FEMALE 
 SPD and HGV reduce the likelihood of yielding on campus, which is expected 
 ADJ, PLT, MUP, MED, and FEMALE all increase the likelihood of yielding. The effects of ADJ, 

MUP, and MED are as expected. The effect of FEMALE is an interesting finding, suggesting 
more yielding to women on campus.  

 The effects of PLT are once again counter to the team’s expectation. A potential explanation is 
the low-speed campus environment, where platooning is a function of general vehicular 
congestion. In those cases, drivers may be more likely to yield, as they are already slow and 
delayed. It was determined that a low-speed platoon (LSPLT) variable should be added. This 
variable had a threshold of 15 mph, where we saw a difference in yielding decisions. 

 Backward elimination showed slightly different results, but told a similar story as forward 
selection. 
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Binary Logit (Y vs. NY, Off-campus data only, forward selection) [Y-9] 

In the next model, only the off-campus data were evaluated with regard to their effect on yielding in a 
forward selection model. 

Table 34: Yield Model Y-9 Results 

  

 AIC(527.985), SC(545.039), -2 Log L (519.985), R-Square (0.1424), Max-rescaled R-Square 
(0.2090) 

 Sample Size: 136 Yields and 389 Non-yields 
 The following variables were determined to be significant: SPD, ADJDIST, and MED 
 SPD reduces the likelihood of yielding 
 ADJDIST and MED increase the likelihood of yielding. All these effects are as expected 
 Backward elimination showed slightly different results, but told a similar story as forward 

selection. 
It can be seen above that the models for on-campus data only and off-campus data only show different 

variables to be significant. As a result, a new variable for CAMPUS=1 will be included in the model 
development.  
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Correlation Table (Y vs. NY, Campus and State variable added) 

The following table shows a correlation analysis of the response variable (Y_NY = 1 for yield events), as 
a function of various independent variables. Each cell contains the correlation coefficient (ranges from -1 
to +1) in the top row, and the p-value of the Chi-Square correlation test in the second row.  

Table 35: Probability Yielding Correlation Table with Campus 

 

 The following variables show a significant positive correlation with the dependent variable, 
suggesting an increase in yielding with an increase in the variable (or binary variable change from 
0 to 1): ADJ, PLT, MUP, MED, TTC, AGE, FEMALE, CAMPUS, and FLORIDA 

 The following variables show a negative or inverse correlation (<-0.3) with the dependent 
variable, suggesting a decrease in yielding with an increase in the variable (or binary variable 
change from 0 to 1): SPD, NEAR, CTRL, DECEL, BUSINESS, and ALABAMA 

 The following variables are intercorrelated: ADJDIST to TTC (0.70652), NEAR to MED (-
0.54721), MUP to CTRL (-0.48996), TTC to DECEL (-0.55213), AGE to ALABAMA (-
0.48343), FLORIDA to ALABAMA (-0.50223) 

 It is expected that ADJDIST, TTC, and DECEL are intercorrelated since TTC and DECEL are 
calculated using the ADJDIST 
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Binary Logit (Y vs. NY, full model) [Y-10] 

Table 36: Yield Model Y-10 Results 

  

 AIC (932.495), SC (1020.379), -2 Log L (896.495), R-Square (0.3648), Max-rescaled R-Square 
(0.4885) 

 This model shows the following variables to be significant: SPD, ADJDIST, NEAR, ADJ, PLT, 
MUP, TTC, DECEL, FEMALE, CAMPUS, FLORIDA, and ALABAMA 

 The following variables are shown to be insignificant: HGV, MED, CTRL, AGE, and 
BUSINESS 

 It is expected that forward selection and backward elimination will show the same variables to be 
significant and insignificant. 
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Binary Logit (Y vs. NY, forward selection) [Y-11] 

Table 37: Yield Model Y-11 Results 

 

 AIC (928.549), SC (982.256), -2 Log L (906.549), R-Square (0.3582), Max-rescaled R-Square 
(0.4797) 

 The following variables were determined to be significant: SPD, ADJ, PLT, HGV, MUP, 
DECEL, FEMALE, CAMPUS, FLORIDA, and ALABAMA 

 Increased speed reduces chance of yielding, as does increased required deceleration rate. 
 Adjacent yield, presence of multiple pedestrians, and female pedestrians increase the chance of 

yielding 
 The coefficient estimates for Florida and Alabama show that drivers are approximately three 

times as likely to yield in Florida and 1.5 times more likely to yield in Alabama than drivers in 
North Carolina. 

 These variables were shown to be insignificant: ADJDIST, NEAR, MED, CTRL, TTC, AGE 
 Backward elimination showed slightly different results, but told a similar story as forward 

selection. 
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Correlation Table (Y vs. NY, low speed platoon variable added) 

The following table shows a correlation analysis of the response variable (Y_NY = 1 for yield events), as 
a function of various independent variables. Each cell contains the correlation coefficient (ranges from -1 
to +1) in the top row, and the p-value of the Chi-Square correlation test in the second row.  

Table 38: Probability of Yielding Correlation Table with low-speed platoon 

 

 The following variables show a significant positive correlation with the dependent variable, 
suggesting an increase in yielding with an increase in the variable (or binary variable change from 
0 to 1): ADJ, PLT, LSPLT, MUP, MED, TTC, AGE, FEMALE, CAMPUS, and FLORIDA 

 The following variables show a significant negative or inverse correlation with the dependent 
variable, suggesting a decrease in yielding with an increase in the variable (or binary variable 
change from 0 to 1): SPD, NEAR, CTRL, DECEL, BUSINESS, and ALABAMA 

 The following variables are intercorrelated: ADJDIST to TTC (0.70652), NEAR to MED (-
0.54721), MUP to CTRL (-0.48996), TTC to DECEL (-0.55213), AGE to ALABAMA (-
0.48343), FLORIDA to ALABAMA (-0.50223) 

 It is expected that ADJDIST, TTC, and DECEL are intercorrelated since TTC and DECEL are 
calculated using the ADJDIST 
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Binary Logit (Y vs. NY, full model) [Y-12] 

Table 39: Yield Model Y-12 Results 

 

 AIC (927.883), SC (1020.649), -2 Log L (889.883), R-Square (0.3691), Max-rescaled R-Square 
(0.4943) 

 This model shows the following variables to be significant: SPD, ADJDIST, ADJ, LSPLT, MUP, 
TTC, DECEL, FEMALE, CAMPUS, FLORIDA, and ALABAMA 

 The following variables are shown to be insignificant: NEAR, PLT, HGV, MED, CTRL, AGE, 
and BUSINESS 

 It is expected that forward selection and backward elimination will show the same variables to be 
significant and insignificant. 
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Binary Logit (Y vs. NY, forward selection) [Y-13] 

Table 40: Yield Model Y-13 Results 

 

 AIC (923.934), SC (977.641), -2 Log L (901.934), R-Square (0.3613), Max-rescaled R-Square 
(0.4838) 

 The following variables were determined to be significant: SPD, ADJ, LSPLT, HGV, MUP, 
DECEL, FEMALE, CAMPUS, FLORIDA, and ALABAMA 

 Increased speed reduces chance of yielding, as does increased necessary deceleration rate. 

 Adjacent yield, low speed platoons, presence of multiple pedestrians, student age pedestrians, and 
female pedestrians increase the chance of yielding 

 The coefficient estimates for Florida and Alabama show that drivers are approximately three 
times as likely to yield in Florida and 1.5 times more likely to yield in Alabama than drivers in 
North Carolina. 

 These variables were shown to be insignificant: ADJDIST, NEAR, PLT, MED, CTRL, TTC, 
AGE, and BUSINESS 

 Backward elimination showed additional variables to be significant 
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Correlation Table (Y vs. NY, State variables changed) 

The following table shows a correlation analysis of the response variable (Y_NY = 1 for yield events), as 
a function of various independent variables. Each cell contains the correlation coefficient (ranges from -1 
to +1) in the top row, and the p-value of the Chi-Square correlation test in the second row. North Carolina 
was originally used as the intercept value, but it was decided that since most of the observations in North 
Carolina were female pedestrians, a different state with more balanced observations should be used as the 
intercept (Florida was chosen). 

Table 41: Probability of Yielding Correlation Table with new State variables 

 

 The following variables show a significant positive correlation with the dependent variable, 
suggesting an increase in yielding with an increase in the variable (or binary variable change from 
0 to 1): ADJ, PLT, LSPLT, MUP, MED, TTC, AGE, FEMALE, and CAMPUS 

 The following variables show a significant negative or inverse correlation with the dependent 
variable, suggesting a decrease in yielding with an increase in the variable (or binary variable 
change from 0 to 1): SPD, NEAR, CTRL, DECEL, BUSINESS, ALABAMA, and NCAROLINA 

 The following variables are intercorrelated: ADJDIST to TTC (0.70652), NEAR to MED (-
0.54721), PLT to LSPLT (0.45414), MUP to CTRL (-0.48996), TTC to DECEL (-0.55213), AGE 
to ALABAMA (-0.48343), ALABAMA to NCAROLINA (-0.52901) 

 It is expected that ADJDIST, TTC, and DECEL are intercorrelated since TTC and DECEL are 
calculated using the ADJDIST 
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Binary Logit (Y vs. NY, full model) [Y-14] 

Table 42: Yield Model Y-14 Results 

 

 AIC (927.883), SC (1020.649), -2 Log L (889.883), R-Square (0.3691), Max-rescaled R-Square 
(0.4943) 

 This model shows the following variables to be significant: SPD, ADJDIST, ADJ, LSPLT, MUP, 
TTC, DECEL, FEMALE, CAMPUS, ALABAMA, and NCAROLINA 

 The following variables are shown to be insignificant: NEAR, PLT, HGV, MED, CTRL, AGE, 
and BUSINESS 

 It is expected that forward selection and backward elimination will show the same variables to be 
significant and insignificant. 
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Binary Logit (Y vs. NY, forward selection) [Y-15] 

Table 43: Yield Model Y-15 Results 

 

 AIC (923.934), SC (977.641), -2 Log L (901.934), R-Square (0.3613), Max-rescaled R-Square 
(0.4838) 

 The following variables were determined to be significant: SPD, ADJ, LSPLT, HGV, MUP, 
DECEL, FEMALE, CAMPUS, ALABAMA, and NCAROLINA 

 Increased speed reduces chance of yielding, as does increased necessary deceleration rate. 

 Adjacent yield, low speed platoons, presence of multiple pedestrians, and female pedestrians 
increase the chance of yielding 

 The coefficient estimates for Alabama and North Carolina show that drivers are approximately 
three times less likely to yield in North Carolina and 1.5 times less likely to yield in Alabama 
than drivers in Florida. 

 These variables were shown to be insignificant: ADJDIST, NEAR, PLT, MED, CTRL, TTC, 
AGE, and BUSINESS 

 Backward elimination showed additional variables to be significant 
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Binary Logit Manual Selection 3 (Y vs. NY, Y-2 but switch out age for campus) [Y-16] 

Table 44: Yield Model Y-16 Results 

  

 AIC (1017.789), SC (1071.496), -2 Log L (995.789), R-Square (0.2967), Max-rescaled R-Square 
(0.3973) 

 The following variables were determined to be significant: SPD, ADJDIST, NEAR, ADJ, HGV, 
MUP, MED, and CAMPUS 
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Correlation Table (Y vs. NY, Alabama as intercept) 

The following table shows a correlation analysis of the response variable (Y_NY = 1 for yield events), as 
a function of various independent variables. Each cell contains the correlation coefficient (ranges from -1 
to +1) in the top row, and the p-value of the Chi-Square correlation test in the second row. Alabama was 
chosen as the intercept, since it has the middle level of yielding for the three sites (Florida has greater 
yielding and North Carolina has less yielding). 

Table 45: Probability of Yielding Correlation with Alabama Intercept 

 

 The following variables show a significant positive correlation with the dependent variable, 
suggesting an increase in yielding with an increase in the variable (or binary variable change from 
0 to 1): ADJ, PLT, LSPLT, MUP, MED, TTC, AGE, FEMALE, CAMPUS, and FLORIDA 

 The following variables show a significant negative or inverse correlation with the dependent 
variable, suggesting a decrease in yielding with an increase in the variable (or binary variable 
change from 0 to 1): SPD, NEAR, CTRL, DECEL, BUSINESS, and NCAROLINA 

 The following variables are intercorrelated: ADJDIST to TTC (0.70652), NEAR to MED (-
0.54721), PLT to LSPLT (0.45414), MUP to CTRL (-0.48996), TTC to DECEL (-0.55213), 
FLORIDA to NCAROLINA (-0.46814) 

 It is expected that ADJDIST, TTC, and DECEL are intercorrelated since TTC and DECEL are 
calculated using the ADJDIST 
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Binary Logit (Y vs. NY, full model) [Y-17] 

Table 46: Yield Model Y-17 Results 

  

 AIC (927.883), SC (1020.649), -2 Log L (889.883), R-Square (0.3691), Max-rescaled R-Square 
(0.4943) 

 The following variables were determined to be significant: SPD, ADJDIST, ADJ, LSPLT, MUP, 
TTC, DECEL, FEMALE, CAMPUS, FLORIDA, and NCAROLINA 
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Binary Logit (Y vs. NY, forward selection) [Y-18] 

Table 47: Yield Model Y-18 Results 

  

 AIC (923.934), SC (977.641), -2 Log L (901.934), R-Square (0.3613), Max-rescaled R-Square 
(0.4838) 

 The following variables were determined to be significant: SPD, ADJ, LSPLT, HGV, MUP, 
DECEL, FEMALE, CAMPUS, FLORIDA, and NCAROLINA 

 Increased speed reduces chance of yielding, as does increased necessary deceleration rate. 

 Adjacent yield, low speed platoons, presence of multiple pedestrians, student age pedestrians, and 
female pedestrians increase the chance of yielding 

 The coefficient estimates for Florida and North Carolina show that drivers are more likely to 
yield in Florida and less likely to yield in North Carolina than drivers in Alabama. 
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Binary Logit Manual Selection 4 (Y vs. NY, remove heavy vehicle) [Y-19] 

Table 48: Yield Model Y-19 Results 

  

 AIC (926.518), SC (975.343), -2 Log L (906.518), R-Square (0.3582), Max-rescaled R-Square 
(0.4797) 

 The following variables were determined to be significant: SPD, ADJ, LSPLT, MUP, DECEL, 
FEMALE, CAMPUS, FLORIDA, and NCAROLINA 

 Increased speed reduces chance of yielding, as does increased necessary deceleration rate. 

 Adjacent yield, low speed platoons, presence of multiple pedestrians, and female pedestrians 
increase the chance of yielding. 

 The coefficient estimates for Florida and North Carolina show that drivers are more likely to 
yield in Florida and less likely to yield in North Carolina than drivers in Alabama. 
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Binary Logit Manual Selection 5 (Y vs. NY, generic model without state variables) [Y-20] 

Table 49: Yield Model Y-20 Results 

  

 AIC (1050.753), SC (1089.812), -2 Log L (1034.753), R-Square (0.2680), Max-rescaled R-
Square (0.3589) 

 The state dummy variables were removed from the model to provide a model that can apply outside 
of the three states where data was collected. 

 Once these dummy variables were removed, it was seen that DECEL is no longer a significant 
variable.  This variable should be kept for consistency. 
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Table 50: Probability of Yielding Model Comparison 

 Y-1 Y-2 Y-11 Y-13 Y-15 Y-17 Y-18 Y-19 Y-20 

Intercept 1.882** 1.8782** 0.0433 -0.2879 2.3137*** 1.7403** 0.8635** 0.8344* 0.1765 
SPD -0.1846*** -0.1888*** -0.1093*** -0.0913*** -0.0913*** -0.1536*** -0.0913*** -0.0894*** -0.0758*** 
ADJDIST 0.0107** 0.0107** --- --- --- 0.00956** --- N/A N/A 
NEAR 0.5844** 0.491** --- --- --- 0.3508* --- N/A N/A 
ADJ 1.0466** 1.0192** 0.9211** 0.9113** 0.9113** 0.9433** 0.9113** 0.9448** 1.1365*** 
PLT 0.2567* --- 0.4120** --- --- 0.1629 --- N/A N/A 
LSPLT N/A N/A N/A 1.0428** 1.0428** 0.9654** 1.0428** 0.9833** 0.9066** 
HGV -0.7799** -0.7287** -0.8247** -0.8461** -0.8461** -0.7545* -0.8461** N/A N/A 
MUP 1.0254*** 1.1791*** 0.8055** 0.7766** 0.7766** 0.8336** 0.7766** 0.7348** 0.7171** 
MED 1.4558*** 1.3798*** --- --- --- 0.5690* --- N/A N/A 
CTRL -0.3252* --- --- --- --- -0.1772 --- N/A N/A 
IN_CW N/A N/A N/A N/A N/A N/A N/A N/A N/A 
TTC -0.2036** -0.1907** --- --- --- -0.2721** --- N/A N/A 
DECEL -0.00168 --- -0.1332** -0.1392** -0.1392** -0.1357** -0.1392** -0.1369** -0.0328 
AGE 0.5377** 0.4682** --- --- --- 0.3036 --- N/A N/A 
DISTR 0.2498 --- N/A N/A N/A N/A N/A N/A N/A 
BUSINESS -0.9817** -0.849** --- --- --- 0.233 --- N/A N/A 
FEMALE -0.0104 --- 0.7987*** 0.8138*** 0.8138*** 0.8296*** 0.8138*** 0.8247*** 0.3765** 
CAMPUS N/A N/A 1.0681*** 1.1059*** 1.1059*** 1.0273*** 1.1059*** 1.0476*** 1.5320*** 
FLORIDA N/A N/A 2.5596*** 2.6016*** N/A 1.1607*** 1.4502*** 1.4245*** N/A 
ALABAMA N/A N/A 1.1337*** 1.1514*** -1.4502*** N/A N/A N/A N/A 
NCAROLINA N/A N/A N/A N/A -2.6016*** -1.3077*** -1.1514*** -1.2034*** N/A 
          
AIC 1078.595 1073.611 928.549 923.934 923.934 927.883 923.934 926.518 1050.753 
SC 1156.714 1127.318 982.256 977.641 977.641 1020.649 977.641 975.343 1089.812 
-2 Log L 1046.595 1051.611 906.549 901.934 901.934 889.883 901.934 906.518 1034.753 

R2 0.2591 0.2553 0.3582 0.3613 0.3613 0.3691 0.3613 0.3582 0.268 

Max-rescaled R2 0.3470 0.3418 0.4797 0.4838 0.4838 0.4943 0.4838 0.4797 0.3589 
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Predicting Probability of Hard Yield, P(HY|Yield) 
Correlation Table (HY vs. SY) 

Table 51: Probability of Hard Yield Correlation Table 

 

 The following variables show a significant positive correlation with the dependent variable, 
suggesting an increase in hard yielding with an increase in the variable (or binary variable change 
from 0 to 1): ADJ, MUP, DECEL, and FLORIDA 

 The following variables show a negative or inverse correlation with the dependent variable, 
suggesting a decrease in hard yielding with an increase in the variable (or binary variable change 
from 0 to 1): SPD, ADJDIST, NEAR, CTRL, and TTC 

 The following variables are intercorrelated: SPD to ADJDIST (0.53843), ADJDIST to TTC 
(0.60717), NEAR to MED (-0.72991), MUP to CTRL (-0.51517), TTC to DECEL (-0.50070), 
AGE to ALABAMA (-0.50312), FLORIDA to ALABAMA (-0.61894) 

 It is expected that SPD, ADJDIST, TTC, and DECEL are intercorrelated since TTC and DECEL 
are calculated using the SPD and ADJDIST 
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Pseudo Nested Logit (HY vs. SY, forward, prior to the addition of the CAMPUS, FLORIDA, and 
ALABAMA variables) [HY-1] 

Table 52: Yield Model HY-1 Results 

  

 Decision to yield has already been made 
 AIC (456.016), SC (480.427), -2 Log L (444.016), R-Square (0.2361), Max-rescaled R-Square 

(0.3249) 
 Reasonable that these factors affect decision between hard or soft yielding in the manner shown 
 Longer distances from the crosswalk and being in the lane closest to the pedestrian decreases the 

chance of hard yielding 
o Drivers who are further away from the pedestrian have time to react with a soft yield 

 Adjacent yields, presence of multiple pedestrians, and higher necessary deceleration rates 
increase the chance that a driver will hard yield 

o If the deceleration rate required to yield is higher, then it is reasonable that the chance of 
hard yielding is increased 
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Pseudo Nested Logit (HY vs. SY, forward, North Carolina represented in intercept) [HY-2] 

Table 53: Yield Model HY-2 Results 

 

 AIC (448.777), SC (481.324), -2 Log L (432.777), R-Square (0.2557), Max-rescaled R-Square 
(0.3519) 

 Longer distances from the crosswalk and being in the lane closest to the pedestrian decreases the 
chance of hard yielding, as well as presence of pedestrians crossing from the median (rather than 
the curb) 

o Drivers who are further away from the pedestrian have time to react with a soft yield 
 Driver are more likely to hard yield at Florida sites than North Carolina sites 
 Increased speed, adjacent yields, and presence of multiple pedestrians increase the chance that a 

driver will hard yield 
 HY-3 included the LSPLT variable, which turned out to be insignificant 
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Pseudo Nested Logit (HY vs. SY, forward, Florida represented in intercept) [HY-4] 

Table 54: Yield Model HY-4 Results 

  
 AIC (449.722), SC (478.201), -2 Log L (435.722), R-Square (0.2507), Max-rescaled R-Square 

(0.3449) 
 Longer distances from the crosswalk and being in the lane closest to the pedestrian decreases the 

chance of hard yielding 
o Drivers who are further away from the pedestrian have time to react with a soft yield 

 Driver are more likely to hard yield at Florida sites than North Carolina sites 
 Adjacent yields, presence of multiple pedestrians, and higher deceleration rates increase the 

chance that a driver will hard yield 
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Correlation Table (HY vs. SY, Alabama represented in intercept) 

Table 55: Probability of Hard Yield Correlation with Alabama Intercept 

 

 The following variables show a significant positive correlation with the dependent variable, 
suggesting an increase in hard yielding with an increase in the variable (or binary variable change 
from 0 to 1): ADJ, MUP, DECEL, and FLORIDA 

 The following variables show a negative or inverse correlation with the dependent variable, 
suggesting a decrease in hard yielding with an increase in the variable (or binary variable change 
from 0 to 1): SPD, ADJDIST, NEAR, CTRL, TTC, and NCAROLINA 

 The following variables are intercorrelated: SPD to ADJDIST (0.53843), SPD to LSPLT (-
0.47912), ADJDIST to TTC (0.60717), NEAR to MED (-0.72991), PLT to LSPLT (0.56626), 
MUP to CTRL (-0.51517), TTC to DECEL (-0.50070), FLORIDA to NCAROLINA (-0.56150) 

 It is expected that SPD, ADJDIST, TTC, and DECEL are intercorrelated since TTC and DECEL 
are calculated using the SPD and ADJDIST 
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Pseudo Nested Logit (HY vs. SY, forward) [HY-5] 

Table 56: Yield Model HY-5 Results 

 

 AIC (449.722), SC (478.201), -2 Log L (435.722), R-Square (0.2507), Max-rescaled R-Square 
(0.3449) 

 Longer distances from the crosswalk and being in the lane closest to the pedestrian decreases the 
chance of hard yielding 

o Drivers who are further away from the pedestrian have time to react with a soft yield 
 Driver are more likely to hard yield at Florida sites than North Carolina sites 
 Adjacent yields, presence of multiple pedestrians, and higher necessary deceleration rates 

increase the chance that a driver will hard yield 
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Table 57: Probability of Hard Yield Model Comparison 

 HY-1 HY-3 HY-5 

Intercept -0.076 1.1114 0.3699 
SPD --- 0.1025*** --- 
ADJDIST -0.0126*** -0.0220*** -0.0134*** 
NEAR -0.7733** -1.4654** -0.7114** 
ADJ 0.9601** 0.9576** 0.8860** 
PLT --- --- --- 
LSPLT N/A --- --- 
HGV --- --- --- 
MUP 1.3988*** 1.2373*** 1.3643*** 
MED --- -1.1434** --- 
CTRL --- --- --- 
IN_CW N/A N/A N/A 
TTC --- --- --- 
DECEL 0.3686*** --- 0.2865** 
AGE --- --- N/A 
DISTR --- N/A N/A 
BUSINESS --- --- --- 
FEMALE --- --- --- 
CAMPUS N/A --- --- 
FLORIDA N/A 1.4007*** --- 
ALABAMA N/A --- N/A 
NCAROLINA N/A N/A -0.9443 
    
AIC 456.016 448.777 449.722 
SC 480.427 481.324 478.201 
-2 Log L 444.016 432.777 435.722 

R2 0.2361 0.2557 0.2507 

Max-rescaled R2 0.3249 0.3519 0.3449 
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APPENDIX E: GAP MODELING DETAILED RESULTS 

Preliminary Data Preparation 

Data preparation for gap acceptance modeling involved the following steps. 

1) Normalized Gap Length (N_GL) was introduced as a variable in the dataset. N_GL was arrived at 
by dividing OBS (observed gap length) by CR_WIDTH (crosswalk width). 

2) For analysis, data were segregated into two sets: a) Non-Controlled Crossings b) Staged 
Crossings. 

3) Similar to above datasets, data were separated into single and multilane sites. The number of 
observations obtained for Single lane Non-Controlled crossings were small in size compared with 
Multi-lane sites. Table 58 shows sample sizes for segregate datasets excluding missing 
observations. 

Table 58: Sample sizes of segregate datasets for gap acceptance analysis 

Dataset Sample Size 
Single Lane (Non-Controlled) 153 

Single Lane (Staged) 213 
All Sites (Non-Controlled) 394 

All Sites(Staged) 836 
  

Detailed Gap Acceptance Results 

Single Lane (Non-Controlled) - Model I 

Table 59 provides summary statistics for single lane non-controlled dataset. The table shows the number 
of missing values for each variable in the dataset. Variables like SPD, ADJDIST, TTC, DECEL, and 
DIST_DEL have around quarter of dataset with missing values. 
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Table 59: Summary Statistics for Single Lane Non-Controlled dataset 

 

Table 60 summarizes contingency tables that indicate the distribution of accepted and rejected gaps for 
categorical predictor variables in the dataset. 
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Table 60: Accepted and rejected gaps for categorical predictor variables- Single Lane (Non-Controlled) 
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Single Lane (Staged) - Model II 

Table 61 shows the number of missing values for each variable in the dataset. Variables like SPD, 
ADJDIST, TTC, DECEL, and DIST_DEL have around half of dataset with missing values. 

Table 61: Summary Statistics for Single Lane Staged dataset 

 

Table 62 summarizes contingency tables that indicate the distribution of accepted and rejected gaps for 
categorical predictor variables in the dataset. 
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Table 62: Accepted and rejected gaps for categorical predictor variables, Single Lane (Staged) 
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All Sites Non-Controlled dataset – Model III 

Table 63 shows the number of missing values for each variable in the dataset. Variables like SPD, 
ADJDIST, TTC, DECEL, and DIST_DEL have around half of dataset with missing values. 

Table 63: Summary Statistics for All Sites Non-Controlled dataset 

 

Table 64 summarizes contingency tables that indicate the distribution of accepted and rejected gaps for 
categorical predictor variables in the dataset. 
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Table 64: Accepted and rejected gaps for categorical predictor variables (All Sites Non-Controlled dataset) 

 

All Sites Staged dataset- Model IV 

Table 65 shows the number of missing values for each variable in the dataset. Variables like SPD, 
ADJDIST, TTC, DECEL, and DIST_DEL have around half of dataset with missing values. 
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Table 65: Summary Statistics for All Sites Staged dataset 

 

Table 66 summarizes contingency tables that indicate the distribution of accepted and rejected gaps for 
categorical predictor variables in the dataset. 

 

 

 

 

 

 

 

 



 

147 
 

Empirically-Based Performance Assessment and Simulation of Pedestrian Behavior
Unsignalized Crossings 
STRIDE Project Number: 2012-016S

Table 66: Accepted and rejected gaps for categorical predictor variables- All sites staged 
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Distribution of Normalized Gap Length for All Sites and Non-Controlled Crossings  

The frequency distribution of N_GL for Non-Controlled Crossings (All Sites Combined) is shown in 
Table 67 and Figure 36 below. 

Table 67: Frequency distribution of N_GL for Non-Controlled Crossings (All Sites Combined) 

 

 

Figure 36: Frequency distribution of N_GL for Non-Controlled Crossings (All Sites Combined) 
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Figure 36 describes the frequency distribution of N_GL. Much of the data lies between 0.12 and 0.48. 
The Percentile ranges were used to group the continuous data into discrete bins. Table 68 highlights the 
distribution of gap acceptance by N_GL. For N_GL values below 50 percentile, rejected gaps are greater 
in number. Similarly, for N_GL values above 50 percentile mark, gap accepted are greater in number. 

Table 68: Distribution of Gap Acceptance by N_GL- Non-Controlled Crossings (All Sites Combined) 

 

Model results for all sites (Non-Controlled) combined w/ normalized gap length: Forward Selection 

Table 69 summarizes the Maximum Likelihood Estimates for all sites (Non-Controlled) combined w/ 
normalized gap length: Forward Selection. 

Table 69: Maximum Likelihood Estimates- Non-Controlled Crossings (All Sites Combined) 

 

 

In earlier logit based gap models, the parameters estimates were not consistent with field observations.  
Thus, probit models were assessed for the gap dataset. Results above show the parameter estimates for 
binary probit model (GO/NO-GO).  
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 The model is constructed for base case (GO = 1) 
 The co-efficient for Normalized gap length (N_GL) is 5.3112. This indicates that increase in 

N_GL increases the predicted probability of gap being accepted. 
 Similarly, when the lead vehicle is not in a platoon (indicated by PLT = 0), the predicted 

probability of gap being accepted increases. 
 

For backward elimination procedure, the model results were similar to forward selection. 

 

Figure 37: Predicted Gap acceptance as a function of N_GL under platoon and non-platoon conditions 

As shown in Figure 37 above, for a given normalized gap length (N_GL), predicted gap acceptance is 
greater for vehicle not being in platoon. 
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Distribution of Normalized Gap Length for All Sites and Non-Controlled Crossings  

The frequency distribution of N_GL for Non-Controlled Crossings (All Sites Combined) is shown in 
Table 70 and Figure 38 below. The number of accepted and rejected gaps is shown in Table 71. 

Table 70: Frequency distribution of N_GL for Staged Crossings (All Sites Combined) 

 

 

Figure 38: Frequency distribution of N_GL for Staged Crossings (All Sites Combined) 
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Table 71: Distribution of Gap Acceptance by N_GL- Staged Crossings (All Sites Combined) 

 

Model results for all sites (Staged) combined w/ normalized gap length: Forward Selection 

Table 72 summarizes the Maximum Likelihood Estimates for all sites (staged) combined w/ normalized 
gap length: Forward Selection. 

Table 72: Maximum Likelihood Estimates- Non-Controlled Crossings (All Sites Combined) 

 

Results above show the parameter estimates for binary probit model (GO/NO-GO).  

 The model is constructed for base case (GO = 1) 
 The co-efficient for Normalized gap length (N_GL) is 6.2670. This indicates that increase in 

N_GL increases the predicted probability of gap being accepted. 
 Similarly, when the lead vehicle is not in a platoon (indicated by PLT = 0), the predicted 

probability of gap being accepted increases. 
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 Likewise, crossing in a gap and pedestrian crossing the street being male increase the predicted 
probability of gap being accepted. 

 

For backward elimination procedure, the model results were similar to forward selection. Figure 39 shows 
predicted gap acceptance under various platoon, lag and gender combinations. 

 

Figure 39: Predicted Gap acceptance under various platoon, lag and gender combinations 
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Gap Acceptance distribution for Single lane, Non-Controlled crossings by Normalized gap length 
(N_GL) 

The distribution of accepted and rejected gaps by N_GL for non-controlled crossings (single lane) is 
summarized in Table 73. 

Table 73: Distribution of Gap Acceptance by N_GL- Non-Controlled Crossings (Single Lane) 

 

Model results for Single lane sites (Non-Controlled) combined with normalized gap length for Forward 
Selection are summarized in Table 74.  Figure 40 shows predicted gap acceptance probabilities for non-
controlled crossings (single lane sites). 

Table 74: Maximum Likelihood Estimates- Non-Controlled Crossings (Single Lane Sites) 

 

Results above show the parameter estimates for binary probit model (GO/NO-GO).  

 The model is constructed for base case (GO = 1) 
 The co-efficient for Normalized gap length (N_GL) is 5.0483. This indicates that increase in 

N_GL increases the predicted probability of gap being accepted. 
 Similarly, when the pedestrian crosses street in a gap (indicated by LAG = 0), the predicted 

probability of gap being accepted decreases. 
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Figure 40: Predicted Gap acceptance probabilities, Non-Controlled Crossings (Single Lane Sites) 

Model results for Single lane sites (Staged) crossings w/ normalized gap length: Forward Selection 

The distribution of accepted and rejected gaps by N_GL for staged crossings (single lane) is summarized 
in Table 75. 

Table 75: Distribution of Gap Acceptance by N_GL- Staged Crossings (Single Lane) 

 

Model results for Single lane sites (Non-Controlled) combined with normalized gap length for Forward 
Selection are summarized in Table 76.  Figure 41 shows predicted gap acceptance probabilities for non-
controlled crossings (single lane sites).  
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Table 76: Maximum Likelihood Estimates- Non-Controlled Crossings (Single Lane Sites) 

 

Results above show the parameter estimates for binary probit model (GO/NO-GO).  

 The model is constructed for base case (GO = 1) 
 The co-efficient for Normalized gap length (N_GL) is 5.1946. This indicates that increase in 

N_GL increases the predicted probability of gap being accepted. 
 When the lead vehicle is in far lane (indicated by NEAR = 0), the predicted probability of gap 

being accepted increases. 
 

For backward elimination procedure, the model results were similar to forward selection. 

 

Figure 41: Predicted Gap acceptance probabilities, Staged Crossings (Single Lane Sites) 
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Validation 

Receiver operating characteristic curves are widely used to assess the fit of categorical models in clinical 
analysis. The curve helps in establishing the threshold values where categorical outcomes predicted with 
higher degree of accuracy. The concept of sensitivity and specificity are important in this regard.  

 Sensitivity: The number of gaps that the test correctly identifies as accepted. 
 Specificity: The number of gaps that the test correctly identifies as rejected. 

If a higher threshold value for accepting a gap is selected, more accurate gap acceptance will be predicted. 
However, many gaps that were accepted below the threshold value may not be identified.  

Conversely, if a lower threshold value for gap acceptance is fixed, will identify more accepted gaps, but 
many gaps that are rejected will also be wrongly identified as accepted gap. 

Area under curve: The area under a ROC curve quantifies the overall ability of the test to discriminate 
between the gaps accepted and gaps rejected. A truly useless test (one no better at identifying truly accepted 
gaps than flipping a coin) has an area of 0.5. A perfect test (one that zero false predicted gap accepted and 
zero false predicted gap rejected) will have an area of 1.00. Greater the area under of the curve, better is the 
prediction accuracy of the model. 

Figure 42 through Figure 45 show the area under the curve for respective gap models build upon segregate 
data sets. From ROC curves, it can be observed that Model IV has the largest area under curve (0.9959), 
followed by Model I (0.8832). All four models fairly predict the gap acceptance outcomes, compared to 
flipping of coin.   
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Figure 42: ROC Curve for MODEL I 
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Figure 43: ROC Curve for Model II 
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Figure 44: ROC Curve for MODEL III 
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Figure 45: ROC Curve for Model IV 
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APPENDIX F: DRIVER STUDY DETAILED RESULTS 

There are 15 drivers involved in the driver behavior study with different characteristics and driving 
experiences. They were asked to complete several questionnaires in terms of obtaining their demographic 
characteristics and general driving attitude, such as prescreening form, pre-driving questionnaire, between-
route questionnaires and final questionnaires. Their information is summarized as following: 

Demographic Characteristics 
Prescreening form and pre-driving questionnaire provided the demographic characteristics and driving 

experience of each participant, as a way to classify driver types. Most of them have the driving experiences 
longer than 3 years. Almost half are females, and drivers in different age group were selected. Their 
aggressiveness could be observe through their perceived desired speed and lane-changing behaviors.  
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Figure 46: Summary of Driver Study Demographic Characteristics 

Driving Experience during Routes 
Between-route questionnaires were designed to ask about the participants’ experience and reactions 

during routes towards pedestrians, bicyclist and transit. Most people noticed the pedestrian crossings, 
bicycle lanes and transit stops, but some of them were not aware of the local laws regarding the right-of-
way of pedestrians and bicycles. 
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Figure 47: Summary of Driver Experience during Study 
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Perceptions on Interacting with Pedestrians 
Final questionnaire was designed to ask about the participants’ reactions and perceptions on pedestrian 

interactions, especially their yield decisions. It is shown that there are almost half drivers stating that they 
felt unsafe and did not expect some of the pedestrian actions during the experiment. And, most of the 
participants stated that they would like to slow down to 5-10 mph to let pedestrian cross if they must. 
Moreover, participants were provided with several conditions to react. This questionnaire (summarized in 
the table below) gives the basic idea of how drivers think about yielding to pedestrians at midblock 
locations in different scenarios.  

Table 77: Summary of Driver Study Pedestrian Perception 

Question 1 2 3 4 5 6 

Pedestrian 
In Group O O O X O O 
Wait on the Sidewalk X X X X O X 

Subject 
Vehicle 

Eye Contact with Pedestrians O X O O O X 
In Leading Position X X O O X X 
Vehicle in Front Yields - - O O - - 
Currently Yielding O O O O X O 

Answer 
S A S A S A S A S A S A 

13 2 15 0 13 2 13 2 15 0 13 2 

Note: O – Yes; X – No; S – Stop; A – Accelerate. 

Discussions 
Most of the participants would like to yield if they see someone is currently crossing or behaves to 

cross. All the participants would stop if pedestrians are looking at them. Some would not yield if there’s 
no eye contact. All the participants would remain stopping if there are other pedestrians coming up. 
Pedestrian crossing in group or individually does not affect driver’s decisions. Some drivers would not 
yield if the front car does not stop for pedestrians. Crosswalks with flashing pedestrian-crossing light stand 
out through the routes. Jaywalking pedestrians always act out of their expectation, and jaywalker is the 
main cause of feeling unsafe. 
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Survey Forms 

Prescreening Form 
 
Table 78: Driver Study Pre-Screening Form Summary  

ID # Gender Age 
Identification 

Group 
Driving 

Experience 
Valid 

License 
Occupation 

How often driving to 
work/school 

How many hours 
per week 

Veh Type 

1 1 >60 Caucasian >10 1 other everyday 8--14 Sedan 
2 1 <25 Caucasian 3--9 1 other usually <4 sedan 
3 1 25-35 Caucasian >10 1 student usually 4--8 sedan 
4 0 25-35 Hispanic 3--9 1 student usually 8--14 sedan 
5 0 25-35 Caucasian >10 1 other sometimes <4 sedan 
6 1 45-55 African Am. >10 1 other everyday >14 sedan 
7 0 35-45 African Am 3--9 1 other everyday 4--8 sedan 
8 0 45-55 Caucasian >10 1 driver everyday >14 truck 
9 1 25-35 Hispanic >10 1 other everyday 4--8 sedan 

10 0 25-35 Hispanic 3--9 1 student usually 4--8 sedan 
11 1 25-35 Caucasian 3--9 1 other everyday 8--14 truck 
12 0 25-35 Hispanic >10 1 other everyday 8--14 sedan 
13 1 <25 Caucasian 3--9 1 other everyday 4--8 sedan 
14 1 25-35 African Am >10 1 student usually 4-8 sedan 
15 0 25-35 Caucasian >10 1 other sometimes <4 pickup 
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Table 79 Driver Study Pre-Driving Form Summary 

ID # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

How long have you been driving in the 
US? 

<1                
1--3                
3--9  1  1   1      1   
>10 1  1  1 1  1 1 1 1 1  1 1 

How often do you drive to 
work/school? 

everyday 1     1 1 1 1  1 1 1   
1--2     1          1 
3--4  1 1 1      1    1  
never                

How often do you use buses or car-
pool? 

everyday                
1--2          1    1 1 
3--4     1           
never 1 1 1 1  1 1 1 1  1 1 1   

How often do you walk for non-
recreational purposes? 

everyday                
1--2 1    1     1   1 1 1 
3--4  1 1             
never    1  1 1 1 1  1 1    

How many hours do you spend driving 
per week? 

<5  1   1        1  1 
5--10 1  1    1  1 1    1  
>10    1  1  1   1 1    

When the speed limit along an urban 
street is 40 mph, what speed are you 
likely to drive at? 

<35                
35--40  1   1 1        1  
40--45 1  1 1   1 1 1 1 1 1 1  1 
>45                

When driving on campus where the 
posted speed limit is 20 mph, what 
speed are you likely to drive at? 

<15                
15--20 1 1   1 1 1   1 1 1 1 1  
20--25   1 1    1 1      1 
25--30                
>30                

How often do you change lanes to gain 
speed or queue advantage? 

when possible    1     1       
seldom 1 1   1 1  1  1  1  1 1 
often   1    1    1  1   
never                

When approaching a pedestrian 
crossing? 

Always stop   1  1 1 1  1  1 1  1 1 
Possibly stop  1 1  1    1  1   1   
Do not stop                
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Questionnaire 1 (I) 

 
Table 80: Driver Study Questionnaire 1 Results 

ID # 1 2 3 4 5 6 7 8 
Did you notice any pedestrian crossings along 

the route? 
Yes  1 1 1 1 1 1 1 
No 1        

Which pedestrian crossing stood out for you and why? Skater 
Near Reitz 

(biker) 
SPVD 

(biggest) 
jaywalk 

one with 
flashing ped 

light 
No 

one with ped 
sign 

one with 
flashing ped 

light 

Under what condition do you yield to pedestrians at the 
crosswalk? 

 
If someone 
behaves to 

cross/crossing 

if waiting, 
standing or 

crossing 
Any time 

If someone 
behaves to 

cross/crossing 
No 

If someone 
behaves to 

cross/crossing 

If someone 
behaves to 

cross/crossing 
Are you aware of the local laws regarding 

right-of-way at pedestrian crossings? 
Yes 1  1 1  1 1 1 
No  1   1    

Did you notice any bicycle lanes along the 
route? 

Yes 1 1 1 1 1 1 1 1 
No         

Did you feel unsafe in any of your interactions 
with bicyclists? 

Yes  1  1  1   1 
No 1   1  1 1  

Are you aware of the local laws regarding 
bicycles on the roadway? 

Yes 1     1 1  
No  1 1 1 1   1 

Did you have to slow down for a stopped bus 
at any time? 

Yes  1 1 1 1 1 1 1 
No 1        

Did you feel unsafe in any of your interactions 
with bus passengers? 

Yes         
No 1 1 1 1 1 1 1 1 
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Questionnaire 1 (II) 

 
ID # 9 10 11 12 13 14 15 

Did you notice any pedestrian crossings along 
the route? 

Yes 1 1 1 1 1 1 1 
No        

Which pedestrian crossing stood out for you and why? No No No 
Headphone 

ped 
One was waiting 

Talking on 
phone ped  

guard 

Under what condition do you yield to pedestrians at the 
crosswalk? 

Upon 
seeing 

If someone behaves 
to cross/crossing 

Always Always 
If someone behaves 

to cross/crossing 

If someone 
behaves to 

cross/crossing 

If someone 
behaves to 

cross/crossing 
Are you aware of the local laws regarding 
right-of-way at pedestrian crossings? 

Yes 1 1 1 1  1 1 
No     1   

Did you notice any bicycle lanes along the 
route? 

Yes 1 1 1 1 1 1 1 
No        

Did you feel unsafe in any of your interactions 
with bicyclists? 

Yes  1 1    1 
No 1   1 1 1  

Are you aware of the local laws regarding 
bicycles on the roadway? 

Yes 1  1  1 1 1 
No  1  1    

Did you have to slow down for a stopped bus 
at any time? 

Yes 1 1 1 1 1 1 1 
No        

Did you feel unsafe in any of your interactions 
with bus passengers? 

Yes      1 (a little)  
No 1 1 1 1 1  1 
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Questionnaire 2 (I) 

 
Table 81: Driver Study Questionnaire 2 Results 

ID # 1 2 3 4 5 6 7 8 
Did you notice any pedestrian crossings along 
the route? 

Yes 1 1 1 1 1 1 1 1 
No         

Which pedestrian crossing stood out for you and why? Skater No 
In front of the 

stadium (more of a 
medium size) 

Exercising 
ped 

one with stop 
sign 

No 
one with ped 

sign 
jaywalk 

Under what condition do you yield to pedestrians at the 
crosswalk? 

 
If someone 
behaves to 

cross/crossing 

If someone 
behaves to 

cross/crossing 

Upon 
seeing 

If someone 
behaves to 

cross/crossing 
No 

If someone 
behaves to 

cross/crossing 

If someone 
behaves to 

cross/crossing 
Are you aware of the local laws regarding 
right-of-way at pedestrian crossings? 

Yes 1  1 1  1 1 1 
No  1   1    

Did you notice any bicycle lanes along the 
route? 

Yes 1   1 1 1 1 1 
No  1 1      

Did you feel unsafe in any of your interactions 
with bicyclists? 

Yes     1   1 for them 
No 1 1 1 1  1 1  

Are you aware of the local laws regarding 
bicycles on the roadway? 

Yes 1     1 1  
No  1 1 1 1   1 

Did you have to slow down for a stopped bus 
at any time? 

Yes  1   1 1 1 1 
No 1  1 1     

Did you feel unsafe in any of your interactions 
with bus passengers?  

Yes        1 for them 
No 1 1 1 1 1 1 1  
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Questionnaire 2 (II) 

 
ID # 9 10 11 12 13 14 15 
Did you notice any pedestrian crossings 
along the route? 

Yes 1 1 1 1  1 1 
No     1   

Which pedestrian crossing stood out for you and why? No 
Wait for each other to 

go 
No 

Someone 
jumped out 

No 
One waits to 
cross, but no 

motorists yield 
No 

Under what condition do you yield to pedestrians at the 
crosswalk? 

Upon 
seeing 

If someone behaves to 
cross/crossing 

always 
Someone 

jumped out 
If someone behaves 

to cross/crossing 

If someone 
behaves to 

cross/crossing 

If someone 
behaves to 

cross/crossing 
Are you aware of the local laws regarding 
right-of-way at pedestrian crossings? 

Yes 1 1 1 1  1 1 
No     1   

Did you notice any bicycle lanes along the 
route? 

Yes 1 1 1 1 1 1 1 
No        

Did you feel unsafe in any of your 
interactions with bicyclists? 

Yes  1 1 1    
No 1    1 1 1 

Are you aware of the local laws regarding 
bicycles on the roadway? 

Yes 1  1  1 1 1 
No  1  1    

Did you have to slow down for a stopped bus 
at any time? 

Yes 1 1 1  1 1 1 
No    1    

Did you feel unsafe in any of your 
interactions with bus passengers?  

Yes        
No 1 1 1 1 1 1 1 
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Final Questionnaire (I) 

 
Table 82: Driver Study Final Questionnaire Results 

ID # 1 2 3 4 5 

Were there any conditions that felt unsafe? 
Yes   busy intersections  

ped/bike don’t 
obey rules 

No 1 1  1  

Did pedestrians act in any ways that you did not expect? 
Yes Skater Biker 

sometimes no notice 
to ped and too late 

to stop 
jaywalk jaywalk 

No      
A single pedestrian is stopped on the sidewalk by a crosswalk you 
are approaching.  They are looking down at their phone. 

Accelerate     1 
Brake 1 1 1 1  

A single pedestrian is stopped on the sidewalk by a crosswalk you 
are approaching.  They are looking at you and look like they want 
to cross. 

Accelerate      

Brake 1 1 1 1 1 

A single pedestrian is stopped on the sidewalk by a crosswalk you 
are approaching.  They are looking at traffic, but the car in front of 
you does not stop and there is a car very close behind you that may 
not see the pedestrian. 

Accelerate    1  

Brake 1 1 1  1 

A group of 5 pedestrians are stopped on the sidewalk by a 
crosswalk you are approaching.  They are looking at traffic, but the 
car in front of you does not stop and there is a car very close behind 
you that may not see the pedestrians. 

Accelerate      

Brake 1 1 1 1 1 

How you drive when you must slow down to let a pedestrian cross, but do not have to 
come to a full stop.  Consider when you begin to slow down, how quickly you slow 
down, where you stop slowing and begin to coast (if you choose to coast) and the speed 
at which you coast (if you choose to coast). 

 
Pay attention to car in 

front to avoid accidents 
(no coasting) 

slow down until ped 
pass my side (coast 

at 10 mph) 

Slow down when 
ped approaching; 

stop when ped 
crossing 

Depends on 
how close the 

ped are 

You have just stopped to let a pedestrian cross at a crosswalk.  You 
see another pedestrian approaching the crossing. 

Remain Stopped 1 1 1 1 1 
Drive Through      

You are approaching a crosswalk and begin to slow to allow a 
pedestrian to cross.  The pedestrian does not step out into the 
intersection, though they are looking at you. 

Accelerate    1  

Brake 1 1 1  1 
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Final Questionnaire (II) 

 
ID # 6 7 8 9 10 

Were there any conditions that felt unsafe? 
Yes  jaywalk step out of cars 

turn left to 
stadium Rd 

bikes 

No 1     

Did pedestrians act in any ways that you did not expect? 
Yes 1 jaywalk 

someone forced 
to a yield 

jaywalk jaywalk 

No      
A single pedestrian is stopped on the sidewalk by a crosswalk you 
are approaching.  They are looking down at their phone. 

Accelerate      
Brake 1 1 1 1 1 

A single pedestrian is stopped on the sidewalk by a crosswalk you 
are approaching.  They are looking at you and look like they want 
to cross. 

Accelerate      

Brake 1 1 1 1 1 

A single pedestrian is stopped on the sidewalk by a crosswalk you 
are approaching.  They are looking at traffic, but the car in front of 
you does not stop and there is a car very close behind you that may 
not see the pedestrian. 

Accelerate      

Brake 1 1 1 1 1 

A group of 5 pedestrians are stopped on the sidewalk by a 
crosswalk you are approaching.  They are looking at traffic, but the 
car in front of you does not stop and there is a car very close behind 
you that may not see the pedestrians. 

Accelerate      

Brake 1 1 1 1 1 

How you drive when you must slow down to let a pedestrian cross, but do not have to 
come to a full stop.  Consider when you begin to slow down, how quickly you slow 
down, where you stop slowing and begin to coast (if you choose to coast) and the speed 
at which you coast (if you choose to coast). 

Slow 
down and 
look both 

sides 

Driving slow when 
there is ped. 5 mph 
under speed limit 

(no coast) 

Always cover 
brake&coast 

Slow down 
quickly 

Begin slowing down 
slowly (not press on 

brakes) 

You have just stopped to let a pedestrian cross at a crosswalk.  You 
see another pedestrian approaching the crossing. 

Remain Stopped 1 1 1 1 1 
Drive Through      

You are approaching a crosswalk and begin to slow to allow a 
pedestrian to cross.  The pedestrian does not step out into the 
intersection, though they are looking at you. 

Accelerate   1   

Brake 1 1  1 1 
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Final Questionnaire (III) 

 
ID # 11 12 13 14 15 

Were there any conditions that felt unsafe? 
Yes  1 too dark  1 jaywalk Cyclist 
No 1  1   

Did pedestrians act in any ways that you did not expect? 
Yes  1 jaywalk  

ped forces to 
yield 

jaywalk 

No 1  1   

A single pedestrian is stopped on the sidewalk by a crosswalk you 
are approaching.  They are looking down at their phone. 

Accelerate   1   
Brake 1 1  1 1 

A single pedestrian is stopped on the sidewalk by a crosswalk you 
are approaching.  They are looking at you and look like they want to 
cross. 

Accelerate      

Brake 1 1 1 1 1 

A single pedestrian is stopped on the sidewalk by a crosswalk you 
are approaching.  They are looking at traffic, but the car in front of 
you does not stop and there is a car very close behind you that may 
not see the pedestrian. 

Accelerate   1   

Brake 1 1  1 1 

A group of 5 pedestrians are stopped on the sidewalk by a 
crosswalk you are approaching.  They are looking at traffic, but the 
car in front of you does not stop and there is a car very close behind 
you that may not see the pedestrians. 

Accelerate   1 1  

Brake 1 1   1 

How you drive when you must slow down to let a pedestrian cross, but do not have to 
come to a full stop.  Consider when you begin to slow down, how quickly you slow 

down, where you stop slowing and begin to coast (if you choose to coast) and the speed 
at which you coast (if you choose to coast). 

Slow down 
when see 

Just slow down if 
no ped is 

approaching 

Slow down to 10 
mph 

5-10 mph 5-10 mph 

You have just stopped to let a pedestrian cross at a crosswalk.  You 
see another pedestrian approaching the crossing. 

Remain Stopped 1 1 1 1 1 
Drive Through      

You are approaching a crosswalk and begin to slow to allow a 
pedestrian to cross.  The pedestrian does not step out into the 
intersection, though they are looking at you. 

Accelerate      

Brake 1 1 1 1 1 
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APPENDIX G: UF INSTITUTIONAL REVIEW BOARD (IRB) FORM 

UFIRB 02 – Social & Behavioral Research 
Protocol Submission Form 

This form must be typed.  Send this form and the supporting documents to IRB02, PO Box 112250, Gainesville, FL 
32611.  Should you have questions about completing this form, call 352-392-0433. 

Title of Protocol:   In-vehicle Experiment on Driver Behavior Along Urban Streets 

 

Principal Investigator:   Dr. Lily Elefteriadou UFID #: 

Degree / Title: 

 

 
Professor 

Mailing Address: (If on 
campus include PO Box 
address): 

365 Weil Hall, PO Box 
116580 

Email: 
elefter@ce.ufl.edu 

Department: Civil and Coastal 
Engineering 

Telephone #: 

352-392-9537, ext.1452 

 
Co-Investigator(s): 
 

Yinan Zheng, Thomas Chase 
Ph.D. students in Civil and 
Coastal Engineering 

 Email: 
zhengyinan@ufl.edu; 
rtchase@ufl.edu 

 
Supervisor (If PI is 
student): 

  

Degree / Title: 
 
 

   

Department: 
 

  

 
Date of Proposed 
Research: 

March 2013 to November 2013 

 
 
Source of Funding (A copy of the grant proposal must 
be submitted with this protocol if funding is involved): 
 

 
STRIDE Center, US DOT 

 

 
Scientific Purpose of the Study:  
To capture important factors that impact driver behavior along urban streets.  We are particularly interested in the 
behavior of drivers around pedestrian crossings.  One of the goals of the study is to provide recommendations on 
modeling the interaction between pedestrians and drivers at pedestrian crossings. 
 
 
Describe the Research Methodology in Non-Technical Language:  (Explain what will be done with or to the 
research participant.) 



 

178 
 

Empirically-Based Performance Assessment and Simulation of Pedestrian Behavior
Unsignalized Crossings 
STRIDE Project Number: 2012-016S

In this research, data will be collected through an instrumented vehicle experiment as well as cameras positioned 
at critical sidewalks. Participants will be recruited and asked to drive through two or three pre-specified routes.  
We will record their speed throughout the network, their car-following and lane changing behavior, as well as their 
yielding and braking behavior in the vicinity of crosswalks as a function of the presence of pedestrians. 
Throughout the experiment (after the completion of each route) we will ask participants to stop and respond to a 
series of questions regarding the portion of the route they just drove. We will also conduct a survey at the end of 
the entire experiment.  
 

Describe Potential Benefits:  

The objective of this project is to understand and model driver behavior along urban streets, as well as yielding 
behaviors in the vicinity of pedestrian crosswalks.  The study will consider driver characteristics and attitudes, 
crosswalk characteristics, and pedestrian characteristics.  There are currently no such models available to 
facilitate urban street design and improve vehicular as well as pedestrian operations.  

Describe Potential Risks: (If risk of physical, psychological or economic harm may be involved, describe the 
steps taken to protect participant.) 

No risk is anticipated in the experiments. Each participant in the instrumented vehicle experiment would be 
provided the driving routes in advance (these would vary by participant), and will be accompanied by one or two 
researchers during driving. The research team will confirm that each participant has a valid drivers’ license. Each 
participant will also be provided the opportunity to drive the instrumented vehicle in advance of the experiment, to 
familiarize themselves with its controls.  

The researchers will minimize the interaction with participants during driving to avoid distracting them.  

 

 

Describe How Participant(s) Will Be Recruited: 

Participants will be selected based on age, gender, driving experience and vehicle ownership. A prescreening 
questionnaire has been developed to help identify qualified participants. Advertisements for the recruitment will 
be posted on campus and around the Gainesville area, and publicized on Craigslist websites. The participant 
recruitment will target residents of the Gainesville area who are generally familiar with the area.  

Other criteria for the participant recruitment are set as:  
1. Must be at least 25 years old;  
2. Must be a regular driver with driving experience no less than one year;  
3. Should indicate a willingness to participate in the experiment. 

All participants will be asked to fill out a background survey form before the beginning of the experiments. The 
background survey form provides information related to the driving habits of the participants and their perceived 
degree of aggressiveness. 

 

Maximum 
Number of 
Participants (to 
be approached 
with consent) 

30 Age Range of 
Participants: 

25 to 60 

 

Amount of 
Compensation/ 
course credit: 

$50 

Describe the Informed Consent Process.  (Attach a Copy of the Informed Consent Document.  See 
http://irb.ufl.edu/irb02/samples.html for examples of consent.) 

The informed consent form explains and clearly states that participation is optional and that the outcome will be 
summarized in a manner that does not identify any participants.  A separate copy of the informed consent form 
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(attached) will be used to advise potential participants and obtain voluntary agreement at the beginning of the 
experiments.   

The informed consent form describes the data collection process and informs the participants of their expected 
duties during the experiment.  The associated risks and benefits, as well as the expected duration of the survey 
after finishing driving and the compensation of the participants are also stated. If the vehicle is not working 
properly during the experiment, then the participant should stop at the nearest possible location to terminate the 
experiment. Risks associated with distractions during driving task will be minimized as the researchers will only 
communicate with the participants to inform them (if necessary) of upcoming driving maneuvers. 

 

(SIGNATURE SECTION) 

Principal Investigator(s) Signature: 

 

 Date: 

Co-Investigator(s) Signature(s):  Date: 

Supervisor’s Signature (if PI is a student):  Date: 

Department Chair Signature:  Date: 

 
 


