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ABSTRACT 

The advancement of communication and information technology has enabled travelers to 
request, track, and pay for trips via mobile devices. This significant convenience promotes 
emerging travel modes such as shared-mobility service including carsharing, bikesharing, 
ridesharing (like Uber and Lyft), and private shuttles (like Bay-Area tech shuttles). Shared-
mobility owners have claimed that these new traffic modes will help reduce car ownership and 
promote the ridership of public transit, while transit agencies, often unsure of how to coexist 
with them, express concerns on the potential competition and potential extra traffic and 
associated congestion. These mixed opinions raise the urgent need to fully understand the 
potential supply-demand market so that we foster cooperation between public transit and 
shared mobility, taking the advantage of both. Motivated by this view, this project conducted a 
comprehensive data analysis to answer two questions: 1) Who are the potential demands with 
high probability to use intermodal services provided by hybrid systems? (Task 1); 2) Where and 
when are the supply gaps to coordinate public transit services with shared-mobility service? 
(Task 2). To accomplish these research objectives, the project team draws from several data 
sources and approaches to conduct research from both the demand and supply perspectives. 
Specifically, Task 1 of this study investigated the influential factors that affect transit users’ 
choices of access and egress modes, including TNC or taxi, drive alone (PNR), carpool (KNR, 
carpool or shuttle), and micromobility modes (bike-sharing, scooters, etc.), using a transit on-
board survey conducted in Spring 2017 for the Orlando metropolitan area. Task 2 of this study 
used the transit trip data and ridesharing trajectory data in the second ring region of Chengdu, 
China to develop innovative data analysis and machine learning approaches to explore the 
transit service gaps in both flexibility and coverage. Together, these efforts provide a snapshot 
to better understand the potential service gaps and demands (such as first/last mile gaps and 
demand) for promoting hybrid mobility that integrates shared mobility and public transit. 
Overall, the outputs of this project will increase the use of sustainable transportation modes, 
which may reduce urban congestion, emission, and energy consumptions. Thus, the success of 
this project will help establish an eco-friendly transportation system.  
 
 
Keywords:  

Ridesharing-transit hybrid urban public mobility, supply-demand market, first/last mile, trip 

data, access/egress mode   
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EXECUTIVE SUMMARY 

Emerging shared mobility services such as Uber and Lyft have quickly spread in popularity and 
may have both positive and negative impacts on public transit. Hybrid public mobility service 
systems that incorporate both modes offer a promising win-win solution. However, we still lack 
knowledge of when and where to integrate them and who needs such services. Namely, the 
spatiotemporal supply-demand market is unclear. To make up this gap, the project team draws 
from several data sources and approaches to conduct research from both demand and supply 
perspectives. The main findings are summarized as follows. One common interest of both 
demand and supply side studies is the first/last mile (FLM) gap of transit service. 

Task 1 studied transit on-board survey data for the Orlando metropolitan area and used a 
Smart Location Database (SLD, comprehensive land-use attributes) to investigate how land use 
characteristics may contribute to users' choice for access and egress modes, beyond the 
personal and household attributes. Employing separate multinomial logit models, the study 
denotes the following key findings: (i) Trips showing higher potential demand of TNCs for FLM 
purposes include airport or university trips, trips with longer access distance, trips made by 
persons with higher household income; (ii) Trips with less potential of using TNC for FLM 
purposes include sports events, medical visits, visitor trips, and evening trips; (iii) In terms of 
the impacts of land-use attributes, higher employment and household entropy and higher 
diversity at the origin showed positive impacts on the use of micro-mobility and walking, and 
reduced the probability of using motorized modes, including TNCs, for first mile purposes. On 
the destination side, higher diversity seemed to encourage the use of TNCs and drive alone 
modes for last-mile purposes. 

Task 2 studied transit and ridesharing trip data (including O-D information) collected in the 
second ring region of Chengdu, China. We considered ridesharing trip data as the detectors to 
demonstrate the deficiency of the flexibility and coverage in the existing transit system. By 
mashing the 3D space spinning by the trip data to an optimal 3D discretization grid, and 
measuring the heat in each cube by the bus or ridesharing service rate, we conducted a 
heatmap analysis and obtained four important findings: (i) The ridesharing service swarm (RS) 
areas are the potential locations to implement new micro-transit services or transit lines and 
stations; (ii) The areas consisted of two ridesharing service swarm zones sandwiched by a 
transit service zone (“sandwich” pattern) revealing the potential first/last mile (FLM) service 
gaps, where response-on-demand services are needed; (iii) Land use data indicate that RS and 
FLM zones are often commercial centers and large residential areas; and (v) Both the RS zones 
and FLM zones evolved over time. Our deep learning method is effectively able to predict the 
variation.  

This study provides useful insights into the deficiency of service coverage/flexibility in existing 
transit systems and the factors that may influence transit users’ choice of modes for access and 
egress purposes. It may help transit agencies and planners in understanding the potential 
supply and demand market for refining existing transit systems considering the integration of 
response-on-demand mobility services. The findings derived from Tasks 1 and 2 may be limited 
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to the dataset collected from different cities, the second ring area of Chengdu and the Orlando 
metropolitan area. We propose future research for conducting a comprehensive case study 
based on a complete dataset in a city and investigating the transferability of the findings. 
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1.0 TASK 1: ANALYSIS FOR DEMAND MARKET 
 

1.1 INTRODUCTION 

Rapidly evolving advanced technologies such as autonomous and connected vehicles, together 
with shared mobility services (such as carsharing or ridesourcing), may forever change how 
people live and travel. At the same time, major demographic and societal trends across America 
may transform future urban mobility. Baby Boomers and Millennials (also called the Gen Ys), 
the two largest generations in the U.S. – at 76 million and 80 million respectively, could bring 
huge opportunities for public transportation over the next two decades. 

Recent surveys have shown an increasing use of new mobility services for first/last mile 
connection to transit. However, limited research has been conducted to quantify their impacts 
on the existing public transportation service and to identify empirical methods to forecast these 
impacts on the future integration of new shared mobility services with transit services. There is 
a pressing need to understand how emerging mobility options may reshape the way people 
travel and how public transportation may find new opportunities to serve their mobility needs.  

This project aims to assess the potential of integrating transit and shared mobility services and 
examine how emerging mobility options and vehicle technologies may work together to 
influence the transit market. Although many have discussed the future of transit in light of the 
emerging technologies and trends, very little is known on how to capture and quantify the 
impacts on the transit market. The results of this study will provide important inputs for public 
transit agencies and private service providers to formulate regulations and policies and develop 
business models that enable the creation of integrated, multimodal, and sustainable mobility 
systems that embrace the emerging technologies and advancements. 

1.1.1 Objective 

This project assesses the potential impacts of emerging technologies and mobility services on 
transit market share. The objectives are to 

1. Investigate existing market of shared mobility as access and egress mode for transit, 
including rider characteristics (income, age group, education, and car ownership, etc.), 
travel patterns (origin/destination type, trip length, access/egress distance, etc.), and other 
modal features (trip purpose, rail/bus preferences, etc.) and to 

2. Explore the spatial pattern of transit trips by different access/egress mode, and evaluate the 
impacts of land use and built environment factors on the use of shared mobility for 
first/last-mile connections. 

1.1.2 Scope 

This project focuses on the most recent transit on-board surveys conducted in the Orlando 
metropolitan area in 2017. Various land-use data are also integrated with the survey data for 
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spatial analysis. These data include the EPA Smart Location Database, the U.S. Census TIGER All 
Roads data, and the General Transit Feed Specification (GTFS) data.   

1.2 LITERATURE REVIEW 

Various researchers have studied the potential effects of shared mobility services and 
autonomous vehicle (AV) technologies on public transit ridership. This section focuses on those 
that specifically looked at the potential of integrating these options with transit service for 
first/last mile solutions.    

Jaller et al. (2019) evaluated the benefits of a first-mile transit access program using shared 
mobility services. The potential demand shifts from drive-alone mode to the proposed program 
were investigated. A simulation and optimization framework was developed and implemented 
in the San Francisco Bay Area for access to Bay Area Rapid Transit (BART).  Results showed that 
by assuming a 25% reduction in travel time, about 18% of increased AM work trips moved from 
drive-alone mode to the simulated mode. Moreover, total vehicle miles traveled (VMT) 
decreased dramatically in simulated mode, while the generalized cost for trips increased 
significantly due to significant travel time increases.  

Vakayil et al. (2017) integrated an autonomous mobility-on-demand (AMoD) service with mass 
transit service so that AMoD functions as a first-and-last-mile solution. They applied the 
simulated system on Washington DC using car2go user trips and hub/frequency data from the 
DC Metro system. The results for comparison of AMoD and integrated system (AMoD-Transit) 
revealed that most of the trips consist of transit segments during rush hours, but only a very 
small percentage of trips are served completely via transit. Moreover, the integrated system 
provides a 50% reduction in total VMT, improved mobility, and decreased the number of 
walkways, especially during rush hours. 

Farhan et al. (2018) evaluated the operation of Shared Autonomous Electric Vehicles (SAEVs) 
for various vehicle range and charging infrastructure by using a simulation model for the 
first/last mile problem. They applied the proposed simulation model on Tukwila Station 
operations in the Seattle metropolitan area. The data included the 2016 origin/destination 
survey of light-rail riders. Results demonstrated that the SAEV fleet could be used as a first/last 
mile solution increasing mobility and decreasing total VMT through ridesharing. Moreover, 
utilizing fast charging technology and long-range vehicles effectively reduces the SAEV fleet and 
wait time.  

In a study by Shen et al. (2017), the potential effects of on-demand sharing autonomous vehicle 
(SAV) on public transit were investigated. They applied an on-demand AV sharing service 
instead of low-demand public transit to analyze its effects on the first/last mile problem 
focusing on workdays. The proposed framework was applied in Tampines Town in Singapore. 
Also, an agent-based simulation model was utilized to evaluate the performance of the 
integrated service. Results showed that by sharing the last-mile rides and careful AV fleet 
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selection, the integrated service could reduce the average passengers’ out-of-vehicle time, 
reduce the occupancy of road resources (VMT), and increase the possibility of financial viability.  

Berrada et al. (2019) investigated the potential demand for autonomous taxis (aTaxis) while 
considering interactions with transit. They integrated a dynamic supply model (aTaxis) into a 
static demand model (scheduled services) and applied the proposed framework to Palaiseau, a 
French city located in the Paris metropolitan area. Results demonstrated that aTaxis were more 
attractive for relatively short trips (average trip length of 4 km). The study indicated that the 
introduction of aTaxies improved service quality and reduced the usage of private cars. For 
markets not directly served by bus rapid transit (BRT), aTaxis also significantly reduced the cost 
of users. 

Alemi and Rodier (2018) investigated the potential market demand for a first-mile transit access 
program in the San Francisco Bay Area through agent-based demand and supply modeling. The 
study focused on drive alone commuters, who had the opportunity to take the rail to work. 
Results showed that by switching to a TNC taxi and taking BART to work, 31% of drive-alone 
trips could reduce their generalized travel cost. Moreover, if all commuters shifted to TNC and 
BART, total VMT could be decreased by 0.5 million miles during the morning commute period. 
Taking into consideration the cost saved by the integrated network, the new service would be 
beneficial for low-income households with few cars. 

In a study by Pinto et al. (2018), the impacts of first-mile SAV service on transit demand in the 
suburban area were investigated. Multinomial logit model and dynamic traffic assignment 
models were integrated and implemented in the region served by Chicago Transit Authority 
(CTA). Agent-based micro-simulation tools for modeling the movements of travelers and SAVs 
were developed. Results indicated that the integration of SAV to the current transit network 
reduced the number of driving trips. In different scenarios, the study observed both 
substitution effects (some of the transit trips shifted to SAV) and complement effects (transit 
became more desirable when integrated with SAV).  

Davidson et al. (2017) investigated the pattern of Uber requests and the implications for transit 
use. They compared Uber trip origins from two datasets, publicly released Uber origin data 
through the New York City Taxi and Limousine Commission, and Uber requests summoned 
through a Transit app. Results showed that a higher frequency of Uber requests was recorded 
from the transit app users than the general requests within 250 feet of a transit station. Uber 
requests through the transit apps also showed greater dispersion throughout the city. This 
indicated that Uber served as a viable option to make up gaps in existing transit options.    

Stiglic et al. (2018) investigated the potential benefits of ridesharing and public transit 
integration, as well as required ride-matching technologies to support this system. They utilized 
ride-matching algorithms to find feasible matches. The proposed framework was implemented 
on a rectangular metropolitan area of 20 by 10 miles covering a circular urban center with a 
radius of 2.5 miles and a sprawling suburban area. The results indicated that the proposed 
system significantly improved mobility and increased the use of public transit. Moreover, total 
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system wide VMT were reduced, and so were the negative externalities associated with car 
travel.  

Yan et al. (2018) evaluated traveler responses to a proposed integrated transit system and 
ridesourcing services named MTransit, at the University of Michigan Ann Arbor campus. A 
survey collecting both revealed preference (RP) and stated preference (SP) data was conducted, 
and a RS-SP mixed logit model was fitted. The mixed logit model outputs were applied to 
predict demand for MTransit under different scenarios. Results indicated that passengers were 
discouraged from using MTransit mainly because of transfers and additional pickups. Moreover, 
it was found that if low-ridership bus lines were replaced with ridesourcing services, transit 
ridership could increase slightly, and operational costs could decrease. Finally, they found that 
when used to provide convenient last-mile connections, ridesourcing could provide a significant 
boost to transit. 

Hall et al. (2018)  investigated whether Uber had substitute or complement effects on ridership. 
They applied a difference-in-differences approach on a dataset including transit ridership data, 
Uber entry and exit, and a variety of controls for 2004–2015. The results indicated that Uber’s 
effect varied based on the Metropolitan Statistical Areas (MSA) population, transit ridership, 
and Uber penetration. It was found that Uber’s entry increased public transit ridership in large 
cities, but it decreased transit ridership in small cities. Interestingly, Uber’s entry increased the 
ridership of transit agencies that had below-median public ridership while decreasing ridership 
for the transit agencies with above-median ridership. 

Curtis et al. (2019) investigated the partnership between transit agencies and Transportation 
Network Companies (TNCs) and the potential opportunities and challenges. TNCs provide 
transportation via mobile apps that connect riders to available drivers nearby. This also known 
as ridesharing. They gathered information from 20 transit agencies through a survey and a 
follow-up interview. They provided comprehensive information about the data in terms of 
partnership development and implementation policies. The results indicated that motivations 
for engaging in partnerships were strong when TNCs served as a specific type of service, met or 
responded to a specific policy goal or challenge, and demonstrated innovation and flexibility to 
experiment. Moreover, the most common market of the partnership was the first mile/last mile 
service and customers of ADA paratransit or dial-a-ride (DAR) services. Finally, the most 
common partnership implementation involved TNC trips subsidized directly by transit agencies. 

Table 1 presents a summary of existing studies that looked at the first/last mile connection 
perspectives of transit usage. The first group of studies focused on the role and potential of TNC 
services, and the second group of studies looked into the effects of integrating AV technologies 
into the transit network services. 

In general, the literature found positive impacts of integrating ridesharing and AV technologies 
with transit services, in terms of reducing VMT, reducing driving trips, saving travel time/cost, 
reducing operational cost, and increasing efficiency. Both substitution and complement effects 
have been noted in the literature. Most studies employed agent-based modeling and 
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simulation techniques to investigate the impacts of the integrated system. Some other papers 
incorporated a mode choice component that was able to capture modal shifts. 

Table 1  Summary of Literature 

Study Study 
Year 

Study Area Method Service Type Study Purpose 

Davidson et 
al. (8) 

2017 New York City, 
USA 

Data comparison TNC Relationship 
between Uber and 
transit usage, the 
role of smartphone 
apps 

Alemi and 
Rodier (6) 

2018 San Francisco, USA Agent-based 
demand and 
supply simulation  

TNC Benefit evaluation, 
mode shift from 
drive alone to BART 

Stiglic et al. 
(16) 

2018 n/a Ride-matching 
algorithms 

ridesharing Benefit evaluation 

Yan et al. 
(11) 

2018 University of 
Michigan Ann 
Arbor campus, 
USA 

Mixed logit model 
based on SP 
scenarios 

ridesourcing Evaluate traveler 
responses to a 
proposed 
integrated service 

Hall et al. 
(12)  

2018 United States Difference-in-
differences 
approach 

TNC Impacts on transit 
ridership 

Jaller et al. 
(14) 

2019 San Francisco, USA Agent-based 
model simulation 
& optimization 

ridesharing Benefit evaluation, 
mode shift 

Curtis et al. 
(13) 

2019 United States Survey TNC investigated the 
partnership 
between transit 
agencies and TNC 
and the potential 
opportunities and 
challenges.  

Vakayil et al. 
(2) 

2017 Washington DC, 
USA 

Simulation  autonomous 
mobility-on-
demand system 

Service integration, 
transit with AMOD 
vs. AMOD only, 
fixed demand,  

Shen et al. 
(15) 

2017 Singapore Agent-based 
Simulation 

on-demand SAV Performance 
evaluation 

Farhan et al. 
(3) 

2018 Seattle 
metropolitan area, 
USA 

Simulation  Shared 
Autonomous 
Electric Vehicles 
(SAEVs)  

Operations and 
performance by 
vehicle range and 
charging 
infrastructure 

Pinto et al. 
(7) 

2018 Chicago, USA Integrated mode 
choice and 

SAV Assess the impacts 
on transit demand 
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Study Study 
Year 

Study Area Method Service Type Study Purpose 

dynamic 
assignment 

Berrada et al. 
(5) 

2019 Palaiseau, France Simulation with 4-
step demand 
model 

autonomous taxi, 
ridesharing 

performance 
evaluation, aTaxis 
replacing BRT in 
connecting transit 
stations with 
destinations. 

 

1.3 DATA AND METHODOLOGY 

This section describes the data compiled for this study as well as the modeling methodology 

used to analyze the mode choice of travelers’ access and egress segments. 

1.3.1 Transit On-Board Survey 

A transit on-board survey was implemented by ETC Institute with AECOM, Connetics 

Transportation Group (CTG), and Resource Systems Group (RSG) on the team for the transit 

agency in the Orlando metro area, the LYNX. The data collection began in January and ended in 

April of 2017. The study was conducted in the Orlando metro area, covering the LYNX service 

area. In total, the survey collected 13,181 responses. 

The 2017 LYNX on-board survey recorded the trip information for each respondent, including 

the trip origin, boarding stop, transfer stop(s), if any, alighting stop, and destination of the bus 

trip for which the survey took place. The respondent’s home address, together with 

sociodemographic information, were also requested. Trip information such as 

origin/destination place type, access, and egress modes, boarding and alighting time, fare paid 

for the trip, etc., were also collected in the survey. 

Figure 1 illustrates the locations involved in a transit journey. Note that home is not necessarily 

the origin of a trip as some respondents took the survey on their way home from work.   
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Figure 1 Organization of Locations in a Transit Trip 

The longitude and latitude of an origin, destination, or home location was derived from 

geocoding with the address provided by the respondent.  Some respondents did not enter 

complete addresses (e.g., missing street numbers) for their homes, origins, or destinations. 

Thus, longitude and latitude of these locations were not accurate and were removed from the 

analysis of access and egress mode choices. 

Figure 2 shows the home locations of the on-board survey respondents. Most of the home 

locations of the respondents are centered in Orlando and covered by the LYNX and SunRail 

networks. However, it can be seen that some of the respondents were from out of town for 

business or sightseeing on the day surveyed (i.e., tourists from out of state are excluded from 

this study).  
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Figure 2 Home Locations of Survey Respondents 

Figure 3 shows a closer look for some of the locations of the respondents’ trip origins.  It can be 

seen that most of the trip origin locations are next to streets and roads (i.e., TIGER/Line data) as 

the locations were geocoded by finding the corresponding addresses on the street GIS data.  

Figure 4 shows a similar map for the respondents’ destination locations.  
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Figure 3 Locations of Trip Origins 
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Figure 4 Locations of Trip Destinations 
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1.3.2 GIS Databases 

1.3.2.1 LYNX and SunRail GIS and GTFS Data  

To visualize a transit trip from the origin to its destination, the GIS and General Transit Feed 

Specification (GTFS) data for all LYNX bus routes and bus stops (LYNX, 2020a) were obtained. 

The GTFS is a data specification for transit route and schedule information (GTFS, 2020). GTFS 

allows public transit agencies to publish their transit data in a format that can be shared by 

different software applications. As many transit transfers occurred between LYNX and SunRail 

(i.e., a commuter rail service serving the area), we also obtained the SunRail links and stations 

GIS/GTFS data from SunRail (SunRail, 2020).  

LYNX provides software application developers with GIS and GTFS data for its bus routes and 

stops. The bus routes data provide information for each bus route, including route number, 

name, and frequency of service on weekdays, Saturdays, and Sundays. Bus stops data contain 

the longitude and latitude, name, address, and amenities information for each bus stop and bus 

shelter in the LYNX network. In addition to fixed-route services, LYNX also offers an on-demand 

transit service called NeighborLink (LYNX, 2020b). The service areas of NeighborLink are defined 

as polygons in LYNX’s GIS database. SunRail also offers GTFS and station GIS data for the 

commuter rail services that include schedule, geocoded station locations, and fare information.  

GIS data for the streets and roads were also obtained from US Census’s TIGER/Line 

geodatabase (US Census, 2020) in order to visualize the streets that connect the origins to the 

boarding bus stops. These data were compiled and integrated into the GIS database. 

1.3.2.2 Visualizing Access and Egress Distances 

In order to visualize how the access modes vary by distances between the origins and first 

transit stops, we created a GIS line layer, in which each line connects a pair of origin and the 

first transit stop. Figure 5 and Figure 6 shows how the access and egress links vary by distance 

and mode in different areas.  

It should be noted that the access/egress links shown in Figure 5 and Figure 6 represent the 

straight-line distances between the origins/destinations and the corresponding 

boarding/alighting stops for visualization purposes only. The actual access/egress movements 

should follow street segments. It can be seen in Figure 5 that most of the motorized modes 

(i.e., dropped off, Uber, Lyft, taxis, drove alone, and car shares) were used by respondents to 

access SunRail stations and some big LYNX transfer stations. Walking and bicycling as access 

modes occurred mostly in areas where more LYNX bus routes are available. Figure 6 shows a 

similar map for the egress modes. 



 Discovering Potential Market for the Integration of 
Public Transportation and Emerging Shared-Mobility Services   

  
22 

 

Figure 5 Access Mode Variations (Northern Network) 
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Figure 6 Egress Mode Variations 
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1.3.2.3 Smart Locations Database 

To identify the association between transit use and neighborhood land use characteristics in 

the study area, we obtained EPA’s Smart Locations Database (SLD), which contains data 

measuring the demographics, socioeconomics, and built environment of census block groups 

(CBG). Variables for each CBG are divided into seven categories, including demographics, 

employment, density, diversity, design, transit, and accessibility (EPA, 2014). Demographic 

variables of the SLD were derived from the 2010 Census data. These include population, 

households, and household workers by earning levels. Employment variables reflect job 

activities and workplace-based socioeconomic characteristics in each CBG.  

Density variables summarize the numbers of the population, households, and employment 

within a CBG per unprotected block group acreage, which represents a land area that is not 

protected from development activity. For CBGs where the unprotected area represented less 

than one half of one percent of its total area, density metrics were calculated based on total 

land area rather than the unprotected area. 

Diversity variables measure the relative mix of land uses within a CBG. These variables measure 

the mix of CBG housing unit counts, and employment counts broken down by employment 

sectors. Because the sizes of CBG vary significantly with respect to urbanization, there is a 

significant limitation in the accuracy of diversity measured by these metrics. For example, a 

very large CBG may have a very low-density of diverse land-use activities that are spatially 

separated within the CBG. Thus, when an individual part of the CBG is examined, its density and 

diversity are both very low. However, the CBG is regarded as having high diversity. Such a 

limitation needs to be considered when interpreting the results of analyses involving the 

diversity variables. 

The design variables measure urban design features in terms of street network density and 

street intersection density by facility types (i.e., automobile, multimodal, or pedestrian). It is 

important to note that no information regarding the presence or quality of sidewalks or bike 

paths is included in the SLD. Thus, a CBG with high densities of streets and intersections is not 

necessarily friendly to walkers or bicyclists. This is another data issue that needs to be 

considered when analyzing the design variables. 

The transit variables measure the availability, proximity, frequency, and density of transit 

services for each CBG. Data sources for these variables include GTFS data from over 200 transit 

agencies throughout the United States. Data for transit services with fixed guideways such as 

rails, streetcars, ferries, and some bus rapid transit routes are also included in the SLD.  

The accessibility variables measure the number of jobs and or working-age population 

accessible within a 45-minute commute via automobile or transit from a CBG. A travel-time 

decay function is used to weigh jobs and workers by travel time such that activities closer to the 

origin CBG carry higher weight in accessibility measurement than those that are further away 

(EPA, 2014). 
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Table 2 summarizes the variables in the SLD by categories.  

Table 2  Summaries of Variables in EPA’s Smart Location Database 

Categories Variables 

Demographics Housing units (HU), households (occupied housing units), population, percent of the 
population that is working-aged, number of households by car ownership (zero, one, 
two or more cars), Percent of households by car ownership (zero, one, two or more 
cars), number of workers, number of workers by earing levels ($1250/month or less, 
$1250 - $3333/month, more than $3333/month), percent of low wage workers 
(earning $1250/month or less). 

Employment Total employment, Retail jobs, Office jobs, Industrial jobs, service jobs, entertainment 
jobs, education jobs, health care jobs, public administration jobs, number of 
employees by earing levels ($1250/month or less, $1250 - $3333/month, more than 
$3333/month), percent of low wage employees (earning $1250/month or less). 

Density Gross residential density (HU/acre), Gross population density (people/acre), Gross 
total employment density (jobs/acre), Gross retail employment density, Gross office 
employment density (jobs/acre), gross industrial employment density, gross service 
employment density, gross entertainment employment density, gross education 
employment density, gross health care employment density, gross public 
administration employment density, Gross activity density (employment + HUs). 

Diversity Jobs per household, employment entropy, employment, and household entropy, trip 
production and attraction equilibrium index, regional diversity, CBG household 
workers/job, deviation of CBG ratio of household workers/job from the regional 
average ratio of household workers/job, deviation of CBG ratio of jobs/population 
from regional average ratio of jobs/population, DBG household/job equilibrium index 

Design Street network density, street network density by transportation mode-orientation 
(automobile, multimodal, or pedestrian), intersection density, intersection density by 
transportation model-orientation 

Transit Distance from population-weighted CBG centroid to the nearest transit stop, the 
proportion of CBG employment within 0.25 or 0.5mile of a fixed-guideway transit 
stop, aggregate frequency of transit service within 0.25 miles of block group boundary 
per hour during evening peak period, aggregate frequency of transit service per 
square mile 

Accessibility Jobs and working-age population within 45 minutes auto travel time, time-decay 
(network travel time) weighted, jobs and working-age population within 45-minute 
transit commute, time decay (walk network travel time, GTFS schedules) weighted, 
proportional accessibility to regional destinations by automobile: employment and 
working-age population accessibility expressed as a ratio of CBG to total Census MSA 
(Metropolitan Statistical Area) accessibility, proportional accessibility to regional 
destinations by transit: employment and working-age population accessibility 
expressed as a ratio of CBG to total Census MSA accessibility, regional centrality index 
by automobile: the ratio between a CBG’s accessibility score and the maximum 
accessibility score within a core-based statistical area (CBSA), regional centrality index 
by transit: the ratio between a CBG’s accessibility score and the maximum 
accessibility score within a core-based statistical area (CBSA) 
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When combined with the LYNX survey data in a GIS, the SLD variables can be used to identify 

the association between access or egress modes and neighborhood land use characteristics at 

the origins or destinations. For example, Figure 7 shows how the access modes vary by the 

variation of employment to population diversity of the Census block groups. The variable 

D2R_JOBPOP is calculated based on the total population and total employment of the block 

group (EPA, 2014). It measures the deviation of a block group’s ratio of jobs/population from 

the regional average ratio jobs/population. It can be seen that motorized modes with longer 

access distances mostly originated from block groups with lower employment to population 

ratios, while walk trips with shorter distances occurred in areas with higher ratios. 

 

Figure 7 Access Modes Variation and Employment to Population Diversities 
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1.3.3 Mode Choice Modeling 

Two Multinomial logit (MNL) models were developed to analyze the mode choice behavior for 
access mode and egress mode, respectively. The multinomial logit model is a popular method 
for exploring the potential relationship between mode choice and the determining factors (Lee 
et al. 2018). The MNL model has relatively simple mathematical formulation, but at the same 
time, it accounts for unobserved utilities (McFadden 1973, Ben-Akiva et al. 1985, Koppelman et 
al. 2000).  

The fundamental assumption of the MNL model is that each individual has unobservable, latent 
utilities for different travel modes, and he chooses the mode that has the highest level of utility 
(Schwanen and Mokhtarian 2005). The MNL model uses the maximum likelihood method to 
estimate the impact of explanatory variables on each category of the dependent variable, and it 
is commonly employed when the dependent variable has more than two categories. 

In this model, one category of the dependent variable (usually the one with the highest 
frequency) is considered as the reference category, and the probability of being in any category 
of the outcome will be compared to the likelihood of being in the reference category. 
Therefore, for a dependent variable with M categories, the calculation of M-1 equations is 
required. 

If m=1 is considered as the reference category, then log-odds for choice m is as follows: 

𝑙𝑛 
𝑃(𝑌𝑖 = 𝑚)

𝑃(𝑌𝑖 = 1)
= 𝛼𝑚 + ∑ 𝛽𝑚𝑘𝑋𝑘 = 𝑍𝑚𝑖

𝐾

𝑘=1

 
 
(1) 

Where,  

𝛼𝑚is the constant term for the mth choice,  

𝛽𝑚𝑘 is a vector of coefficients for the mth choice and the kth variable, 

𝑋𝑘 is the set of explanatory variables,  

𝑍𝑚𝑖 is the predicted log-odds for the ith observation 

Consequently, there will be M-1 log-odds, one for each category relative to the reference 

category. When there are more than two categories for the dependent variable, the predicted 

probability of observation i choosing mth mode would be calculated as follows (Green 2003):  

𝑃 (𝑌𝑖 = 𝑚) =
exp (𝑍𝑚𝑖)

1 + ∑ (𝑍ℎ𝑖)𝑀
ℎ=2

, ∀ℎ = 2, … 𝑀 

 

 
(2) 
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1.4 RESULTS 

This chapter presents the results in two sections. The first section presents descriptive statistics 
for the transit trips from the 2017 LYNX survey, including trip characteristics, user 
characteristics, and spatial characteristics. The second section presents the mode choice model 
results and elaborates on the impacts of various variables on the individuals’ mode choice 
behavior for access and egress mode.  

1.4.1 Transit Travel Patterns 

The survey data included 13 access/egress modes, which were aggregated into six major modes 

for this analysis, as shown in Table 3 below. TNC and Taxi trips were combined into one 

category, given the very small share of TNC trips, also considering the similarity of the two 

services. These taxi trips could represent a potential market for TNC services. 

Table 3  Mode Category  

Mode Group Origin/Destination Transport Code Origin/Destination Transport From Survey 

Walk 1 Walk 

TNC or Taxi 

8 Taxi 

9 Uber, Lyft, etc. 

Micromobility 

2 Personal Bike 

3 Bike share 

12 Skateboard 

13 Scooter 

Drive Alone 

5 Drove alone and parked 

7 Car share (e.g., Zip Car, etc.) 

K&R, Carpool, Shuttle  

4 Was dropped off or picked up by someone 

6 Drove or rode with others and parked 

11 Shuttle 

Wheelchair 10 Wheelchair 

 

Table 4 illustrates the mode share for access and egress trips based on weighted survey data. 

Some survey records had missing information for access/egress mode. As shown, walking was 

the predominant mode for both access (90.5%) and egress (92.4%) trips. The next most popular 

mode used for access and egress trips was dropped off/picked up, carpool and shuttle. 

Interestingly, micromobility (Bikeshare, Bike, Scooter, Skateboard) showed a non-trivial market 

share for both access and egress usage. Only a small portion of trips was made by TNC or taxis 

for access (0.3%) and egress (0.5%) trips.  
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Table 4  Distribution of Access/Egress Modes  

Mode 
Access Trip Egress Trip 

Frequency Percentage Frequency Percentage 

Walking 83,076 90.5% 84,811 92.4% 

TNC or Taxi 295 0.3% 481 0.5% 

Micromobility 2,060 2.2% 2,377 2.6% 

Drive Alone 1,700 1.9% 1,186 1.3% 

K&R, Carpool, Shuttle 4,535 4.9% 2,809 3.1% 

Wheelchair 122 0.1% 123 0.1% 

Total 91,787 100.0% 97,787 100.0% 

 

1.4.1.1 Trip Characteristics 

Figure 8 presents the percentage of individuals that took the same trip in the opposite direction 

by their access and egress mode group.  It shows that a majority of those drove alone users, 

especially for access to transit, were making round trips, which makes sense as they need to get 

the car on the way back with the exception of carsharing users who may just return the car at 

the station. On the other hand, most TNC or taxi users did not have a trip in the opposite 

direction, which may indicate the flexibility of these modes. 

 

Figure 8 Trip in Opposite Direction by Mode 

Looking into the mode groups by time of day, Figure 9 shows very similar patterns for both 

access and egress modes. Evening trips showed much less share than other time periods, as 

transit services have limited service hours during the evening period. Compared to other 
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modes, drove alone trips were more likely to take place during AM peak hours, probably for 

work purposes. Wheelchair users were more likely to use the transit service during the midday 

period and much less likely in AM peak hours compared to other users.  

Figure 9 Distribution of Time Period by Mode 
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among other place types, wheelchair users showed a significant share of medical trips, while 

TNC and taxi users showed higher chances of connecting to airports, especially for egress 

purposes.  

Figure 10 Trip Origin Place by Mode 
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Similarly, Figure 11 presents the distribution by trip destination place type. Besides home, work, 

and work-related trips, it shows significant college/university trips taken by TNC or taxies for 

access purposes. Interestingly, there was significant use of micromobility for college/university 

trips for both access and egress modes. It also can be seen that more than 50% of carpool trips 

as egress mode were going home, which probably due to the easiness to prearrange carpool 

trips and services with fixed destinations. 

Figure 11 Trip Destination Place by Mode 
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1.4.1.2 User Characteristics 

This section focuses on the patterns in user characteristics. Figure 12 shows the usage of access 

and egress modes by gender. It shows that males and females were almost equally likely to use 

different modes, with the exception of micromobility. A majority of the micromobility users 

were male for both access (88.4%) and egress (82.5%) purposes. Relatively speaking, female 

users were less likely to use cars or TNC or taxi for both access and egress trips. 

 

 

Figure 12 Distribution of Gender by Mode 
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Figure 13 shows the age distribution for different rider types. Compared with other modes, 

young adults (18-34 years old) showed a higher propensity to use walk and carpool for access, 

and walk and TNC or taxi for egress. Middle-aged adults were less likely to walk and carpool for 

both access and egress. Older adults (above 55) showed high shares of using wheelchairs, for 

those who did travel using transit services. Interestingly, they were also less likely to use TNC or 

taxi services for connecting with transit. 

Figure 13 Distribution of Age by Mode 
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In terms of household income distribution among different user groups, the graphs are 

presented in Figure 14. As it moves from walking to drive alone mode, there were lower shares 

of low-income households and higher shares of higher-income households. The pattern is 

especially clear for access trips. Only 1.3% of the walk access trips and walk egress trips were 

made by users with very high household income (more than $100K). Comparing between 

access and egress trips, it seems that the impacts of income on access mode choice were more 

prevalent than that on the egress mode. 

Figure 14 Distribution of Income by Mode 
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1.4.1.3 Spatial Characteristics 

Figure 15 presents the mode share by trip length for the access and egress segments, 

respectively.  As expected, for segments less than 1 mile, walking had much higher shares 

among the modes than for the longer segments for both access and egress purposes. Generally, 

as the access length increased, the share of walking mode decreased, and the share of drive 

alone mode increased. Carpool seems to be the most desirable for trips between 1 to 5 miles, 

especially for access purposes. Beyond 20 miles, drive alone, and carpool were the most 

desirable modes, while other modes were unlikely to be used. 

Figure 15 Access/Egress Length by Mode 
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In terms of the impacts of land use pattern, Figure 16 presents the mode share by urban type, 

specifically origin urban type for access trips and destination urban type for egress trips. It 

shows that 22% of TNC/taxi access trips originated in rural areas, a much higher proportion of 

rural trips than other modes. This indicates a large potential of TNC to connect transit services 

in low density areas. Carpool also showed a significant share in connecting transit services to 

destinations in rural areas.  

 

Figure 16 Mode Share by Urban Type 
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1.4.2 Mode Choice Model Results 

As mentioned, to investigate the factors that impact individuals’ choices behavior for access 

and egress trips, two separate multinomial logit models were developed. Walking was 

considered as the base category in the models. The model results are discussed from three 

perspectives: trip characteristics, user characteristics, and land-use patterns. 

The model performance results for both models are presented in Table 5. Akaike’s information 

criterion (AIC) is a fined method based on in-sample fit to estimate the likelihood of a model for 

predicting future values (Akaike 1974, Mohammed et al. 2015). Schwarz Criterion (SC) or 

Bayesian information criterion (BIC) estimates the trade-off between model fit and complexity 

of the model (Stone, 1979). A lower AIC or BIC value is preferred. As shown in Table 5, both 

access and egress models showed a lower AIC and BIC value in the full finalized model than the 

initial model; therefore, indicating acceptable performance.  

Another criterion that compares the performance of statistical models is the log-likelihood 

Ratio Test (LRT). In this study, the LRT detects whether the improvement in the performance of 

the full model compared to the initial model is significant or not. The difference in the log-

likelihood scores for the two models is calculated as: 

𝐿𝐿 = −2[𝐿𝑜𝑔𝐿(𝛽𝑓𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙) − 𝐿𝑜𝑔𝐿(𝛽𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑜𝑑𝑒𝑙)] (3) 

If the value of LL is higher than the value of 𝜒𝐷𝐹
2  (a chi-square distributed statistic with degrees 

of freedom equal to the difference in the number of estimated parameters for the two models), 

It can be stated that the performance of the full model is significantly better than the initial 

model (Washington et al. 2011). 

Again, both full models showed better goodness-of-fit compared to the initial model, and this 

stands true at a 5% significance level. 

Table 5  Model Performance Results 

 Access Model Egress Model 

Criterion Initial Model Full Model Initial Model Full Model 

AIC 11512.294 9914.894 9707.009 6528.688 

SC 11549.645 11857.156 9744.36 7537.171 

-2 LOGL 11502.294 9394.894 9697.009 6258.688 

LL 2107.4004 3438.3205 

Max-Rescaled 
R-Square 

0.255 0.442 

 

https://www.sciencedirect.com/science/article/pii/B9780128025086000326#!
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1.4.2.1 Access Mode Choice Model  

Impacts of Trip Characteristics 

Table 6 presents the access mode choice model results for trip-related variables. For a unit 

change in the explanatory variable, the logit of each mode (which is in log-odds units) relative 

to the reference mode (walking) changes by its respective parameter estimate, given that the 

other variables are held constant. The values in the parenthesis represent the standard 

deviations for the corresponding factor. 

Table 6  Model Results for Trip Characteristics 

Base Category  Parameter Wheelchair Micro-
mobility 

Carpool TNC or Taxi Drove 
Alone 

 Intercept -6.5879 
(0.0023) 

-3.6756 
(0.0012) 

-3.7920 
(0.0019) 

-5.2544 
(0.0033) 

-2.9104 
(0.0011) 

Access Length Distance from the 
origin to transit stop 
(mile) 

 1.3802 
(0.0004) 

1.0966 
(0.0004) 

1.2077 
(0.0009) 

0.8382 
(0.0011) 

Destination 
Place  

Airport -0.6220 
(0.0765) 

0.6333 
(0.0141) 

1.6289 
(0.0077) 

4.5079 
(0.0080) 

0.7242 
(0.0208) 

Medical, Hospital -1.7809 
(0.0145) 

0.1199 
(0.0061) 

0.4373 
(0.0057) 

-0.7863 
(0.0345) 

0.1350 
(0.0102) 

Sporting Events -0.9363 
(0.0944) 

0.9780 
(0.0144) 

3.4428 
(0.0080) 

-3.0877 
(0.4182) 

2.3677 
(0.0155) 

University/college -0.3235 
(0.0214) 

0.7579 
(0.0050) 

0.1250 
(0.0060) 

1.0043 
(0.0122) 

1.0782 
(0.0064) 

Origin Place  Shopping -0.3878 
(0.0088) 

-0.5704 
(0.0085) 

-0.6115 
(0.0071) 

0.3203 
(0.0171) 

-0.3722 
(0.0111) 

Social Visit 0.7676 
(0.0057) 

0.2216 
(0.0048) 

0.4953 
(0.0041) 

0.2782 
(0.0125) 

-0.2334 
(0.0104) 

Transfer Number of transfers 
from origin 

-0.1726 
(0.0033) 

-0.2860 
(0.0021) 

-0.2565 
(0.0019) 

-0.2274 
(0.0060) 

-0.4630 
(0.0036) 

Number of transfers 
to destination 

-0.1730 
(0.0035) 

-0.3844 
(0.0022) 

-0.2476 
(0.0019) 

-0.1449 
(0.0052) 

-0.4698 
(0.0035) 

Two-way trip Trip in the Opposite 
Direction-Yes 

0.0474 
(0.0035) 

0.1887 
(0.0016) 

0.0287 
(0.0016) 

-0.3186 
(0.0053) 

0.2456 
(0.0024) 

Visitor  Visitor-Yes -0.6948 
(0.0138) 

-0.8573 
(0.0061) 

0.0533 
(0.0039) 

-0.8857 
(0.0102) 

-0.4065 
(0.0081) 

Time Period  Midday 0.0369 
(0.0033) 

-0.1284 
(0.0021) 

-0.2435 
(0.0020) 

-0.3179 
(0.0061 

-0.2294 
(0.0033) 

Evening -0.2170 
(0.0071) 

-0.0934 
(0.0035) 

-0.2140 
(0.0033) 

-0.7531 
(0.0114) 

-0.6177 
(0.0069) 

Month 
(reference -
January) 

December 0.4852 
(0.0070) 

0.2096 
(0.0039) 

0.0561 
(0.0038) 

-0.1235 
(0.0169) 

-0.2026 
(0.0081) 

February 0.4805 
(0.0035) 

-0.1917 
(0.0024) 

-0.1677 
(0.0023) 

-0.0660 
(0.0081) 

0.1235 
(0.0036) 

November -0.4131 
(0.0284) 

0.1986 
(0.0137) 

0.1971 
(0.0132) 

0.9348 
(0.0364) 

-0.1984 
(0.0307) 
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As expected, the longer the access length (distance from the origin to the transit station), the 

more likely that people would choose micromobility, TNC or taxi, carpool, and drove alone 

mode over walking. 

Those that went to the airport through transit services were more likely to use TNC or taxi, 

followed by carpool and drive alone modes for access to transit. On the other hand, medical 

trips and sporting events were less likely to start with TNC or taxi trips for accessing transit. 

When people were leaving shopping places, TNC and taxi became highly desirable for 

connecting their transit trips. 

The number of transfers showed negative impacts on the probability of choosing any of the 

modes compared to walking. This may be an indication that those who took transit services 

despite the inconvenience of transfers might not have the option to use other modes for cost 

considerations or other reasons. Wheelchairs were more likely to take place in the midday 

period, while evening trips were likely to be taken by walking compared to AM and PM peak 

periods, probably most likely for non-work trips. 

Figure 17 presents the model results of trip characteristics in terms of their impacts on the use 

of access modes. The largest positive and negative effects on the use of TNC or taxi was going 

to an airport trip, and sporting event, respectively. Micromobility had the highest impacts 

compared to the access length and going to sports or college/universities. Sports events also 

showed high positive impacts on the use of carpool and drove alone modes. 

 

Figure 17 Relative Impacts of Trip Characteristics 

 

-5 -3 -1 1 3 5 7 9

Access Length

Destination Place-Airport

Destination Place-Medical, Hospital

Destination Place-Sporting Events

Destination Place-University/college

Origin Place-Shopping

Origin Place-Social Visit

Number of transfers from origin

Number of transfers to destination

Trip in the Opposite Direction-Yes

Visitor-Yes

Time Period-Evening

Time Period-Midday

Month-December

Month-February

Month-November

Impacts of Trip Characteristics on Access Mode Choice

Drove Alone TNC or Taxi Carpool Micromobility Wheelchair



 Discovering Potential Market for the Integration of 
Public Transportation and Emerging Shared-Mobility Services   

  
41 

Impacts of User Characteristics 

Table 7 presents the impacts of user characteristics on the choice of access mode. Interestingly, 

young adults (18-34 years old) showed a negative association with all modes, suggesting that 

they were more likely to walk to the transit station. As expected, individuals with disabilities 

showed the highest positive impacts on the wheelchair, and the highest negative associations 

with TNC or taxi. This may be because most TNC or Taxi services were not fully compatible with 

the needs of these users. Households with 4 to 7 vehicles were more likely to choose carpool, 

drive alone, and micromobility over walking. 

As expected, individuals with a driver's license were likely to drive or carpool to use transit 

services. In view of ethnicity, African Americans and Asians were more likely to use wheelchairs 

and walking than other modes. Hispanics showed a higher propensity of using TNC or taxi, 

followed by walking. Male users were more likely to use micromobility modes than females. 

In terms of household income, middle-income ($20K-$50K) users were more likely to choose 

micromobility, followed by driving or carpooling, whereas they were less willing to use TNC or 

taxi, probably due to cost associated with these modes. Users with high and very high 

household income showed a high inclination to drive or carpool to access transit services. 

Table 7  Model Results for User Characteristics 

Base Category  Parameter Wheelchair Micro-mobility Carpool TNC or Taxi Drove Alone 

 Intercept -6.5879 
(0.0023) 

-3.6756 
(0.0012) 

-2.9104 
(0.0011) 

-5.2544 
(0.0033) 

-3.7920 
(0.0019) 

Age  Young Adults (18-34 
years old) 

-0.2057 
(0.0054) 

-0.2083 
(0.0019) 

-0.1087 
(0.0017) 

-0.2024 
(0.0052) 

-0.2400 
(0.0029) 

Disability Disability-Yes 5.6846 
(0.0024) 

-0.1091 
(0.0035) 

-0.1853 
(0.0040) 

-0.4964 
(0.0146) 

-0.1382 
(0.0068) 

Driver License Driver License-Yes -0.3566 
(0.0043) 

-0.1025 
(0.0017) 

0.1838 
(0.0015) 

0.2740 
(0.0039) 

0.7187 
(0.0022) 

Ethnicity African American 0.0350 
(0.0034) 

-0.4618 
(0.0020) 

-0.1985 
(0.0018) 

-0.3017 
(0.0058) 

-0.4848 
(0.0033) 

Asian 1.0739 
(0.0166) 

-0.8116 
(0.0132) 

-0.1800 
(0.0085) 

-0.3127 
(0.0220) 

-0.1952 
(0.0135) 

Hispanic -0.4542 
(0.0063) 

-0.4058 
(0.0025) 

-0.1067 
(0.0023) 

0.1160 
(0.0059) 

-0.2807 
(0.0038) 

Gender Male -0.1961 
(0.0032 

1.1017 
(0.0015) 

-0.0648 
(0.0016) 

-0.3152 
(0.0051) 

-0.1626 
(0.0027) 

Number of 
Vehicles 

Number of Vehicles 
(4-7) 

-0.3735 
(0.0293) 

0.2450 
(0.0082) 

0.7470 
(0.0062) 

 0.6076 
(0.0104) 

HH Income  Middle Income ($20K-
$50K) 

-0.4078 
(0.0048) 

0.2643 
(0.0018) 

0.1236 
(0.0018) 

-0.1562 
(0.0051) 

0.1743 
(0.0030) 

High Income ($50K-
$100K) 

-0.5003 
(0.0142) 

0.4240 
(0.0033) 

0.7081 
(0.0029) 

0.4793 
(0.0075) 

1.3374 
(0.0035) 

Very High Income 
(More than $100K) 

-1.0835 
(0.0639) 

1.8597 
(0.0067) 

4.7172 
(0.0037) 

0.9611 
(0.0317) 

2.6380 
(0.0092) 
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Figure 18 illustrates the impacts of user characteristics on the use of different modes. It shows 

that income and disability status had the most significant impacts on the choice of access 

mode. The use of micromobility was mostly impacted by gender and ethnicity. 

 

Figure 18 Relative Impacts of User Characteristics 
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Table 8  Model Results for Land-Use Patterns 

Parameter Wheelchair Micro-mobility Carpool TNC or Taxi Drove Alone 

Intercept -6.5879 
(0.0023) 

-3.6756 
(0.0012) 

-2.9104 
(0.0011) 

-5.2544 
(0.0033) 

-3.7920 
(0.0019) 

Employment and household entropy -0.2846 
(0.0036) 

0.0218 
(0.0020) 

-0.0740 
(0.0018) 

-0.3697 
(0.0054) 

-0.1725 
(0.0030) 

Gross education(8-tier) employment 
density (jobs/acre) on unprotected land 

-0.0089 
(0.0002) 

0.0059 
(0.0001) 

0.0032 
(0.0002) 

0.0051 
(0.0003) 

0.0046 
(0.0003) 

Gross entertainment (5-tier) employment 
density (jobs/acre) on unprotected land 

0.0875 
(0.0009) 

-0.0246 
(0.0007) 

-0.0387 
(0.0006) 

0.0220 
(0.0015) 

-0.0578 
(0.0012) 

Gross industrial (5-tier) employment 
density (jobs/acre) on unprotected land 

0.0588 
(0.0012) 

0.0728 
(0.0009) 

-0.0349 
(0.0008) 

0.0837 
(0.0025) 

-0.0138 
(0.0015) 

Gross office (8-tier) employment density 
(jobs/acre) on unprotected land 

-0.0479 
(0.0007) 

0.0431 
(0.0006) 

0.0104 
(0.0004) 

  -0.0074 
(0.0009) 

Gross residential density (HU/acre) on 
unprotected land 

-0.0672 
(0.0007) 

-0.0141 
(0.0004) 

-0.0396 
(0.0004) 

-0.0144 
(0.0011) 

-0.0391 
(0.0006) 

Intersection density in terms of multi-
modal intersections having three legs per 
square mile 

-0.0143 
(0.0002) 

0.0040 
(0.0001) 

-0.0078 
(0.0001) 

-0.0112 
(0.0003) 

-0.0010 
(0.0001) 

Number of jobs per household 0.0158 
(0.0002) 

-0.0040 
(0.0001) 

-0.0052 
(0.0001) 

-0.0156 
(0.0003) 

-0.0157 
(0.0002) 

Regional Diversity* 0.1822 
(0.0046) 

-0.2039 
(0.0026) 

-0.1312 
(0.0024) 

-0.1877 
(0.0076) 

-0.1952 
(0.0041) 

* regional diversity measures the deviation of the CBG employment rate (jobs per person) from the regional 

average employment rate. 

 

Figure 19 Relative Impacts of Land-Use Patterns 
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1.4.2.2 Egress Mode Choice Model 

Impacts of Trip Characteristics 

Table 9 below presents the model results of the egress mode choice model in terms of trip 

attribute variables. It shows that as egress length increased, the probability of using motorized 

mode and micromobility modes increased as well. In terms of the impacts of destination place 

type, users going to medical visits or hospitals were more likely to drive from transit stops to 

their destinations, while college/university students were less likely to carpool. Users going to 

shopping places were less likely to use micromobility and carpool modes for last-mile 

connection. On the other hand, users coming from airports were more likely to use carpool 

(including being picked up) and TNC or taxi modes for egress trips, and those coming from 

medical visits or hospitals showed a higher propensity of using the wheelchair or drive alone 

mode for the egress link. 

Similar to the access mode choice model, the number of transfers showed negative impacts on 

the probability of choosing the motorized modes for egress purpose compared to walking. 

Carpool and drive alone were less likely to be used in the midday period. 

Table 9  Model Results for Trip Characteristics 

Base 
Category 

Parameter Wheelchair Micro-
mobility 

Carpool TNC or Taxi Drove 
Alone 

 Intercept -13.4066 
(7.9537) 

-4.7544 
(0.3286) 

-3.6420 
(0.3349) 

-6.7790 
(0.7589) 

-5.1356 
(0.6185) 

Egress Length Distance from a 
transit stop to the 
destination (mile) 

  
1.3488 
(0.0785) 

1.9382 
(0.0730) 

1.9516 
(0.0743) 

1.9496 
(0.0738) 

Destination 
Place 

Medical, Hospital 
        

1.6571 
(0.5022) 

Shopping 
  

-0.5440 
(0.2947) 

-0.8199 
(0.4143) 

    

University/college 
    

-8.2498 
(1.5404) 

    

Origin Place 
 

Airport 
    

1.6083 
(0.3247) 

1.2316 
(0.6448) 

  

Medical, Hospital 1.3308 
(0.5081) 

      
1.2256 
(0.5121) 

Transfer Number of transfers 
from the origin 

  
-0.2695 
(0.1084) 

-0.3085 
(0.1304) 

  
-1.7543 
(0.3952) 

Number of transfers 
to the destination 

  
-0.3313 
(0.1084) 

-0.3416 
(0.1226) 

-2.0377 
(0.6283) 

-1.3293 
(0.3030) 

Two-way trip Trip in the Opposite 
Direction-Yes 

      
-0.6058 
(0.3155) 

  

Time Period Midday 
    

-0.5634 
(0.1478) 

  
-1.2591 
(0.3002) 

Month 
 

February 
    

-0.3214 
(0.1499) 

-0.8936 
(0.4040) 
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Figure 20 presents the impacts of trip characteristics on egress mode choice. Egress length 

showed great impacts on the use of all four motorized modes. College/university trips showed 

the largest negative impact on carpooling. The number of transfers showed great negative 

impacts on the use of TNC or taxi or drive alone modes. Medical or hospital trips (either as the 

origin or destination) were more likely to use drive alone mode for last-mile connection.  

 

Figure 20 Relative Impacts of Trip Characteristics 

Impacts of User Characteristics 

Table 10 presents the model results for user characteristics in terms of their impacts on egress 

mode choice. Users with disabilities showed a higher probability of carpool or being picked up 

by others than using other modes. Those with driver’s licenses were more likely to drive or use 

TNC or taxi for their egress trips.  

Looking at ethnicity, African Americans and Hispanics were more likely to walk; Asians showed 

a higher propensity of using TNC or taxi services, while American Indians showed higher 

preferences of micromobility and less preference or carpooling for egress linkage. Interestingly, 

male users showed a lower probability of using drive alone mode than female users.  

In terms of household income, middle-income ($20K-$50K) users were more likely to choose 

micromobility, followed by TNC or taxi. Users with high household income showed a high 

inclination to use TNC or taxi services for the last mile, followed up drive alone, carpool and 

micromobility. 

Figure 21 presents the impacts of user characteristics. 
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Table 10 Model Results for User Characteristics 

Base Category Parameter Wheelchair Micro-mobility Carpool TNC or Taxi Drove Alone 

 Intercept -13.4066 
(7.9537) 

-4.7544 
(0.3286) 

-3.6420 
(0.3349) 

-6.7790 
(0.7589) 

-5.1356 
(0.6185) 

Disability Disability-Yes     0.3710 
(0.2085) 

    

Driver License Driver 
License-Yes 

      0.9973 
(0.3394) 

2.7107 
(0.4122) 

Ethnicity African 
American 

  -0.4305 
(0.1279) 

-0.5889 
(0.1513) 

-0.8613 
(0.3531) 

-1.7695 
(0.2962) 

American 
Indian 

  0.8178 
(0.4512) 

-1.7185 
(1.0373) 

    

Asian       1.4318 
(0.5830) 

  

Hispanic   -0.3602 
(0.1457) 

-0.2862 
(0.1597) 

  -1.1175 
(0.2841) 

Gender Male         -0.4788 
(0.2099) 

HH Income 
 

Middle 
Income 
($20K-$50K) 

  0.5542 
(0.1197) 

  0.9792 
(0.3493) 

  

High Income 
($50K-$100K) 

  0.3693 
(0.2035) 

0.7323 
(0.1930) 

1.4262 
(0.4377) 

0.9137 
(0.2805) 

 

 

Figure 21 Relative Impacts of User Characteristics 
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Impacts of Land Use Characteristics 

Table 11 presents the model results for land use patterns at the destination in terms of the 

impacts on the choice of egress mode. It shows that private car related modes (carpool or drive 

alone) were less likely to be used at destinations with more households with zero auto 

ownership. Entertainment employment density also showed negative impacts on the use of 

drive alone or carpool modes. Destinations with higher proportional accessibility also showed 

strong positive impacts on the use of micromobility modes, also drive alone and carpool use. 

Destinations with high regional diversity also encouraged the use of TNC or taxi services for 

egress purposes. Figure 22 presents the impacts of the land-use variables. Accessibility and 

diversity measures showed strong impacts on the egress mode choice behavior. 

Table 11 Model Results for Land-Use Patterns 

Parameter Wheelchair Micro-mobility Carpool TNC or Taxi Drove Alone 

Intercept -13.4066 
(7.9537) 

-4.7544 
(0.3286) 

-3.6420 
(0.3349) 

-6.7790 
(0.7589) 

-5.1356 
(0.6185) 

Number of households in Destination 
CBG that own zero automobiles 

    -0.0016 
(0.0007) 

  -0.0042 
(0.0014) 

Gross entertainment (5-tier) 
employment density (jobs/acre) on 
unprotected land of destination 

    -0.0880 
(0.0427) 

  -0.2173 
(0.1125) 

Proportional Accessibility to Regional 
Destinations 

  3.9741 
(1.3076) 

3.8362 
(1.1854) 

  4.8458 
(1.2974) 

Regional Diversity of destination       1.4658 
(0.4872) 

0.7102 
(0.3621) 

 

 

Figure 22 Relative Impacts of Land-Use Patterns 
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1.5 CONCLUSION 

This report presents a study aiming to investigate the potential market of TNCs to serve as the 

first/last mile connection for transit services. To achieve this goal, this study investigated the 

influential factors that affect transit users' choices of access and egress modes, including TNC or 

taxi, drive alone (PNR), carpool (KNR, carpool or shuttle), micromobility modes (bike-sharing, 

scooters, etc.), and others. Transit on-board survey data collected in Spring 2017 for the 

Orlando metropolitan area were used for this analysis. The survey covered bus services 

provided by LYNX. The survey collected detailed trip information for all segments of the transit 

trips, including access and egress links. User demographics and household information were 

also recorded in the survey. This data provided the opportunity to look into the characteristics 

of transit trips and investigate the influential factors to users’ mode choice behavior for first 

and last-mile connections. 

In addition to the transit on-board survey data, various other data were also compiled and 

integrated into the GIS database to facilitate the analysis. These data include GTFS data for 

LYNX transit networks, street data, and the Smart Location Database (SLD) provided by EPA. 

The SLD data provided a comprehensive set of land use attributes at census block group level, 

including population and employment information, density measures, diversity variables, land 

use design variables, transit-related attributes, and accessibility measures. These data provided 

the opportunity to investigate how land use characteristics may contribute to users' choice for 

access and egress modes, beyond the personal and household attributes. 

Separate multinomial logit models (MNL) were developed to investigate the mode choice for 

access and egress links, respectively. The models revealed interesting insights into transit users’ 

choice behavior for first and last-mile connections. Various personal characteristics, trip 

attributes, and land use variables showed significant impacts. Particularly, trips going to 

airports or universities/colleges had much higher probabilities of using TNC for access and 

egress purposes. On the other hand, sports events and medical visits were less likely to be 

connected through TNC services. Visitors and evening trips were also less likely to start with 

TNCs. A longer distance between the origin and the transit service showed positive impacts on 

the use of TNC services. Higher household income also showed a positive influence on TNC 

usage. 

In view of land use characteristics, higher employment and household entropy and higher 

diversity at the origin showed positive impacts on the use of micromobility and walking, and 

reduced the probability of using motorized modes, including TNCs, for access purpose. On the 

destination side, higher diversity seemed to encourage the use of TNCs and drive alone modes 

for egress purposes. 

This study provides useful insights into the factors that may influence transit users' choice of 

modes for access and egress purposes. It may help transit agencies and planners in 
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understanding the potential market for using TNCs as first/last mile connections for transit 

services.  
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2.0 TASK 2: ANALYSIS FOR SUPPLY MARKET 

2.1 INTRODUCTION 

In recent years, ridesharing services, such as Uber, Lyft, Avego (Carma), SideCar, DiDi (in China), 
etc., has quickly spread in popularity (Xu et al., 2015) in different cities and countries. It has an 
immediate impact on public transit. Some studies show that shared-mobility service is a 
complement to public transit as it promotes the ridership of transits and helps reduce traffic 
congestion (Feigon and Murphy, 2016). Other studies demonstrated that ridesharing mode is 
undermining public transportation and becoming a major contributor to snarled traffic 
congestion and carbon emissions (Hill, 2018). These mixed findings indicate that ridesharing 
and public transit present complicated competitive/complementary relationships over a 
spatiotemporal space and none of them can fully satisfy the modality requests individually. 
Forming hybrid urban public transport services such as hybrid transit system (Koffman, 2004) or 
cooperating with transit and emerging on-demand services (i.e., microtransit or ridesharing 
services) (Boarnet et al., 2017) is well accepted, both of which seek to inject or integrate the 
flexibility into the public transit system. Over decades, many models (Aldaihani et al., 2004; Fu, 
2002; Quadrifoglio and Li, 2009) have been developed to implement and operate hybrid transit 
systems in different ways, but few succeeded. The main challenge is the traffic demand 
variation in different levels (Velaga et al., 2012). To effectively operate a hybrid system, we 
need to not only penetrate the gradual evolvement of transit demand to properly refine the 
fixed transit routes but also predict the ad hoc demand online to timely implement flexible 
services. In addition, the prediction and accommodation of these two types of demands should 
be coordinated rather than be independently conducted.   

However, the majority of current studies usually predict the demand for one of them 
individually. For example, using the transit ridership data, demographic survey combined with 
land use, many studies estimated transit demand for planning the inflexible transit routes in 
long term (Boyle, 2006; Hashemian, 2002; Huang, 1996; Nazem et al., 2011; Roberts, 1985; 
Sung et al., 2014). These traditional data and analysis approaches are either too expensive or 
not sensitive enough to capture gradual and mild transit demand changes over weeks or 
months resulting from many factors, such as people’s activity and seasonal requirements. 
Accordingly, current transit routes usually will not change over months or years, and they do 
not coordinate well with the flexible routes provided by on-demand services. Other efforts 
predicted the dynamic ad hoc demand through ridesharing data (Faghih et al., 2019; Liu et al., 
2019; Xu et al., 2017; Zhang et al., 2019), i.e., Uber and taxi, only for improving ridesharing 
service rather than transit routes. Therefore, the state-of-the-art indicates that transit and 
ridesharing service data are often individually analyzed with separate objectives for the 
respective modes. Their prediction on demand provides limited help to coordinate the flexible 
and inflexible routes in a hybrid urban public transport service system. From another point of 
view, public transit and ridesharing services together make up a hybrid system. The demand 
and service gaps of such hybrid system can be sensed by their service data. Therefore, in order 
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to well coordinate with their services, we should put transit and ridesharing service data 
together for the spatiotemporal demand analysis. 

In view of the above issues, this study seeks to investigate the data analysis approaches, which 
combine unite transit and ridesharing service data together to explore the service gaps for 
setting new transit stations and routes as well as integrating ridesharing and microtransit 
routes. The objective is to promote the cooperation between public transit and on-demand 
services. To do that, this study postulates that current competitive/complementary 
relationships between traditional transit system and ridesharing service make ridesharing 
vehicles function as the probes to detect the deficiency of the flexibility and coverage in the 
existing transit network and its services. The findings can provide clues to refine the backbone 
transit network and promote cooperation between transit and on-demand services.  

A majority of the existing studies used the ridership data (including the pickup and drop-off 
data of ridesharing service or loading and alighting data of transit service) for the demand 
prediction. Few studies investigated the trip data collected from both ridesharing and transit 
sides, which may reflect the deficiency of the flexibility and coverage in existing transit routes 
from a different perspective. For example, the spatiotemporal areas dominated by ridesharing 
trips (services) indicate potential deficient transit services, while other areas evenly covered by 
both transit and ridesharing trips indicate diverse traffic demand for hybrid service modes. 
Thus, putting the trip data from both modes together will give us a new angle to discover the 
potential supply-demand market for integrating these two modes in a hybrid service system. 
However, it is not trivial to implement the aforementioned data analysis. We introduce the 
research challenges along with our contributions to the solution approach development as 
follows.  

First, the transit trips have fixed routes and schedules, while the ridesharing services randomly 
distribute over a city during different time slots over a day. The two sets of trip data together 
ramblingly scatter in a spatiotemporal space and they are non-additive, which make many 
quantitative approaches have no way to start directly. To address this difficulty, we first 
developed a new data presentation approach, which considers each trip as a 3D curve and then 
meshed their spatiotemporal services with an optimal 3D grid involving a number of uniform 3D 
cubes. This optimal 3D discretization enables us to zoom in and study the service competition 
between these two modes in each cube. However, the results only provide information 
fragments rather than the service gaps that we are interested in. This problem motivates our 
study to further aggregate the cube information fragments to ridesharing/transit swarms – the 
areas formed by the connected cubes which are dominated by one service – in each time slice. 
Built upon that, we are able to explore the corresponding spatial service gaps and provide 
future route planning suggestions. Next, by combining the ridesharing pick-up, drop-off data 
and transit station data, we propose an innovative approach – identifying “sandwich” patterns 
– to locate the potential first/last mile zones for integrating microtransit services. Last, we 
recognize that the insights obtained at each time slice can only present spatial demand 
variation but not temporal demand dynamics. Consequently, it will not help planning on-
demand services that require the understanding of the temporal variation. This study then piles 
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the information slices in the temporal dimension as a time series data and feeds them into a 
deep learning network to predict future demand patterns.  

The effectiveness of this data analysis approach is validated by a case study built upon the field 
data collected in the second ring region of Chengdu, China. Specifically, we find nine first/last 
mile zones. Combining with land-use data, we noticed that they are either big commercial or 
residential areas with high population density. Among them, some areas locate around metro 
lines, thus microtransit service is potentially needed to cover first/last mile demand. Some 
areas are away from the metro line but with low transit service and they potentially require 
additional transit service coverage. Thus, analyzing these trip data provides constructive 
guidance to improve the current transit service by considering the ridesharing services.  

We summarize the main contributions of this study as follows: (i) We developed a new 3D 
presentation approach to present the trip data collected with different collection rates and 
coverage;  (ii) We developed an innovative data analysis approach, which spatially aggregates 
information fragments and temporally piles the spatial information to uncover the potential 
transit service gaps hidden in trip data involving both transit and ridesharing modes; (iii) We 
found two interesting patterns, service swarms and “sandwich” patterns, which respectively 
point out underlying transit demand and first/last mile zones suitable for potential microtransit 
service; (iv) Using deep learning method, we predicted the time-vary transit first/last mile zones 
which helps the operation of microtransit service; and (v) We analyzed a set of field data 
collected from Chengdu city in China and validated the effectiveness of our approaches. Our 
analysis of ridesharing trip data in this study can be extended to other mobility modes, such as 
bike-sharing and private vehicle trip data, to provide a thorough understanding of transit 
service gaps. These contributions together benefit the development and operations of hybrid 
urban public transport systems. 

2.1.1 Objective 

This task assesses the spatiotemporal service gaps of transit services. The objective is to 
investigate when and where are the supply gap/hubs to either integrate shared mobility and 
public transit services or properly implement hybrid transit systems. 

2.1.2 Scope 

This task focuses on data analysis of transit trip data and ridesharing trajectory data in the 
second ring region of Chengdu, China in 2016.  

2.2 LITERATURE REVIEW 

This study focuses on developing innovative approaches to analyze trip data collected from 
both transit and ridesharing services, aiming to discover the mobility service gaps and their 
variation in an urban area. The findings of this study will help promote the cooperation of 
transit system and existing on-demand services for improving the service level in an urban 
public transport system. This research is closely related to the demand prediction for transit 
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and ridesharing. Our review will introduce these closely related studies in literature, 
differentiate this effort from existing studies and further highlight our contributions. 

We first discuss the state-of-the-art of transit demand prediction. According to Boyle (2006), 
existing studies mainly applied ridership (Fang et al., 2018; Hashemian, 2002; Huang, 1996; Jun 
et al., 2015; Nazem et al., 2011; Nourbakhsh and Ouyang, 2012; Roberts, 1985; Sung et al., 
2014) and O-D survey data (Chatterjee and Venigalla, 2004) to predict transit demand. For 
example, (Nazem et al., 2011) analyzed the travel patterns of different demographic classes to 
understand the relationship between transit ridership and demographics. (Sung et al., 2014) 
employed spatial regression analysis to investigate the impact of land use on the rail transit 
ridership in the city of Seoul. (Jun et al., 2015) applied a multinomial logit model to analyze how 
land use and demographic characteristics affect transit ridership. In recent years, the ridership 
data collected by the Automated Fare Collection (AFC) system is used to capture the variation 
of the transit demand, especially for railway system (Fang et al., 2018). For example, based on 
AFC data, (Nourbakhsh and Ouyang, 2012) developed the state-space model to predict the real-
time subway demand, considering the impact of special events. In the meantime, extensive 
studies analyzed the ridership data collected from ridesharing services, but mainly for 
predicting the ridesharing demand. For example, based on Uber pick-up data, (Faghih et al., 
2019) applied the LASSO spatial-temporal autoregressive model to predict the Uber demand in 
Manhattan. (Xu et al., 2017) fed the taxi pick-up and drop-off data in New York City into a long 
short-term memory (LSTM) neural network to forecast the future taxi requests. (Zhou et al., 
2018) employed the convolutional LSTM (ConvLSTM) to capture the spatiotemporal 
relationship of both taxi and bike-sharing demand data in New York for a short-term demand 
prediction. (Zhang et al., 2019) developed an end-to-end multi-task learning temporal 
convolutional neural network to predict the short-term ridesharing demand and compared its 
performance with the state-of-the-art deep learning approaches. 

This brief review indicates several research gaps that this study tries to make up. First of all, the 
majority of existing studies predicted/estimated the passenger demand for transit or 
ridesharing services through their own ridership data (i.e., transit smart card data or ridesharing 
pick/drop data) combined with the demographic and land-use features. However, few studies, 
like this research, investigated the service trip data collected from both transit and ridesharing. 
This study noticed that these trips can reflect the collective and dynamic competition between 
these two modes in a spatiotemporal space. Consequently, analyzing their trip data may offer 
unique insights for integrating these two types of mobility services in a local network.  To the 
best of our knowledge, this is the first attempt to investigate the service deficiencies of an 
existing transit system through analyzing its competitors’ services such as ridesharing trip data. 
On the other hand, the trip data are non-additive curves spanning in a local network during a 
period. Existing approaches, such as various choice models and regression analysis, which have 
been successfully used to analyze ridership, land use and demographic data, cannot be directly 
applied to study trip data. It calls for new approaches to conduct the data analysis. The above 
points highlight the novelty and unique methodology contribution of this study.  
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From the application view, this study will significantly contribute to the development of the 
hybrid transit system or the integration of transit system with emerging on-demand services. 
Even though the concept of the hybrid system has been proposed for decades, only a small 
percentage of transit agencies (Potts et al., 2010) adopted it. The uncertainty of passenger 
demand (Velaga et al., 2012) plays one of the critical challenges. For example, (Qiu et al., 2014) 
indicated that the uncertainty of demand leads to inappropriate slack time and makes flex-
route service fragile and inefficient. Therefore, to operate a hybrid transit system well, we need 
new research approaches to better understand the demand varying in different levels in a 
hybrid mobility service environment. Few studies in the literature investigate this research 
need. This study seeks to partially fill in this research gap, too. Below is the unique 
methodology developed by our team of researchers, which we believe contributes significantly 
to the state-of-the-art.  

2.3 METHODOLOGY 

This study is devoted to the development of innovative approaches to analyze trip data 
collected from transit and ridesharing services to investigate the flexibility and coverage gaps of 
the current transit system. These findings will help implement new fixed routes, stations as well 
as microtransit to promote the implementation of a hybrid transit system. To do that, we 
consider ridesharing trips as the detectors to reveal the potential mobility demand for the 
flexible and inflexible transit routes and also explore their evolvements over different temporal 
and spatial horizons. Along with the above thought, this study mainly considers the trip data 
defined as follows. We consider 𝑉 number of ridesharing vehicles and 𝐵 number of bus/metro 
services. Their trajectories are respectively updated at discrete time stamps 𝑛 ∈ {0,1, … , 𝑁} 
according to ridesharing vehicles GPS updating frequency, and at 𝑚 ∈ {0,1, … , 𝑀} 
corresponding to the bus arrival time at the stations. Accordingly, the trip of the ridesharing 

vehicle 𝑣 is denoted as 𝒵𝑣
𝑆 = {𝑧𝑣,𝑛

𝑆 (𝑥, 𝑦), 𝑛 ∈ {0,1, … , 𝑁}} , ∀𝑣 ∈ 𝑉, where 𝑧𝑣,𝑛
𝑆 (𝑥, 𝑦), 

abbreviated as 𝑧𝑣,𝑡𝑛
(𝑥, 𝑦), is the coordinates of vehicle 𝑣 at the 𝑛th time stamp (time 𝑡𝑛); 

similarly, the trip of  bus 𝑏 is denoted as 𝒵𝑏
𝑇 = {𝑧𝑏,𝑚

𝑇 (𝑥, 𝑦), 𝑚 ∈ {0,1, … , 𝑀}} , ∀𝑏 ∈ 𝑈, where 

𝑧𝑏,𝑚
𝑇 (𝑥, 𝑦) is the coordinates of bus 𝑏 at the time 𝑚th time stamp. We mark 𝑡0 as the departure 

time at start station and 𝑡𝑚, 𝑚 ∈ {1, … , 𝑀} is the arrival time at following stations along the 
transit line. 

Built upon the above data, this study will develop data analysis approaches, which integrate 
spatiotemporal statistical data analysis, machine learning and optimization approaches, to 
provide the following capabilities. We will first discover when and where transit and ridesharing 
compete or complement on the local transportation network.  Based on this knowledge, we will 
reveal transit mobility service deficiencies in flexibility and coverage as well as their temporal 
and spatial variation pattern so that we can provide valuable planning suggestions to operate a 
hybrid transit system. Our data analysis approaches include three key components: developing 
optimal discrete 3D presentation, analyzing ridesharing service swarms to discover spatial 
transit service gaps and then predicting the dynamic patterns of the service gaps.  
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2.3.1 3D presentation and Optimal Discretization  

As we mentioned above, this study involves ridesharing GPS trajectory data and bus trip data. 
These two sets of data ramblingly scatter in the traffic network and their coverage change over 
time, i.e., each trip starts and ends at different time and locations by going through different 
roads. To uncover the service pattern involved in the data, we need a good presentation to 
support the analysis. Considering the spatiotemporal dynamics of the trip data, this study puts 
all trips in a 3D space spanned by 2D (x-y) spatial coordinates and time (t) dimension. This 3D 
space represents the entire service space. Accordingly, each individual trip is presented by a 3D 
route in the space. See Figure 23 for an example.  

Furthermore, we noticed that the 3D routes intersect and then diverge at different 
spatiotemporal points. Some areas present very dense trips going through by both bus and 
ridesharing modes, where they compete for demand, but others sparsely visited by one of 
them, where they complement. Most importantly, these trips data are not directly addable. To 
systematically analyze these competitive and complementary relationships between these two 
traffic service modes, this study discretizes the 3D service space into 𝐾 × 𝐼 number of uniform 
cubes (see Figure 23, where K is the number of the pixels spatial area and I is the number of 
time interval in dimension.  And then, we examine their service relationship in each cube first 
by observing the number of bus or/and ridesharing services occurring in each cube. Built upon 
the analysis in each cube, we propose statistical and machine learning methods to discover the 
complementary or competitive pattern over the entire 3D space. To do that, it is noticed that 
the determination of cube dimension (i.e., time interval and the pixel size in spatial dimension) 
is therefore very critical to the analysis. Different cube sizes may lead individual cubes to 
present different information, which provides a different interpretation for the competition 
relationship. This study next discusses the significance of this factor in detail and then presents 
our approach to decide the optimal length of the time interval and pixel size.  

2.3.1.1 Optimal Time Interval  

The data analysis based upon the 3D presentation first discretizes (slices) the study horizon by a 
fixed time interval 𝜏. This section investigates how the length of the time interval of each cube 
will affect the statistical analysis and then explores the optimal time interval 𝜏∗. Please note 
that with a given time interval, we locate the position of a ridesharing vehicle by its averaged 
coordinates during each time interval. This process will compromise the accuracy of the 
location information. It also may lead to miscounting of the number of ridesharing services in 
each cube if the cube size is not proper. For example, the actual trajectory of a ridesharing 
vehicle may go across multiple cubes during an interval, and then this ridesharing service 
should be counted in each of these cubes. However, by taking the average coordinates, it can 
only fall in one cube but not other cubes. If the time interval is too wide, it may cause 
significant miscounting. On the other hand, if the time interval is too small, it will lead to a large 
number of cubes and makes the training process expensive. Therefore, the selection of 𝜏 needs 
to balance the computation load and the information accuracy. To address this dilemma, we 
develop the optimization model in (4) -(7), which explores the optimal time interval with the 
objective to minimize the information loss and the dataset size, subject to feasible range of the 
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value 𝜏. Note that transit service data is not involved in this optimization model, because we 
analyze the arrival time of transit vehicle at each stop rather than transit trajectory, the 
accuracy of transit service location information is not influenced by improper time discretizing.  

 

More exactly, this study uses the sample variances (the first item in (4)) to measure the loss of 
the location information and also puts the penalty on the number of the cubes. Note that this 
optimization model is hard to be solved because of the presence of the decision variable 
𝜏 underneath the summation symbol. However, it only involves one variable. In practice, we 
can find a lower and upper bound for 𝜏 so that the searching space is reasonably limited. For 
example, in our dataset, the DiDi vehicle trajectory data has updating frequency of 2~4 seconds 
which makes 𝜏 = 4; the average DiDi single trip service time provides an upper bound 𝜏̅. 

Therefore, we can quickly search the local optimal solution of 𝜏  by using line search 
approaches (Dechter and Pearl, 1985) in a narrow feasible region [𝜏, 𝜏].  

𝑷𝟏: 

𝑚𝑖𝑛
 𝜏 

𝛼 ∑
1

|𝑈𝑖|

𝐼

𝑖=0

∑
1

|ℤ𝑣,𝑖
𝜏 |

𝑣∈𝑈𝑖

∑ ||𝒛𝒗,𝒕(𝑥, 𝑦) − 𝒛𝒗,𝒕̅̅ ̅̅ (𝑥, 𝑦)||2
2

𝑖𝜏 ≤𝑡≤(𝑖+1)𝜏 

+ 𝛽𝑀
𝑇

 𝜏 
 

 

 
 
(4) 

Subject to: 
𝜏 ≤ 𝜏 ≤ 𝜏̅, 

 

 
(5) 

𝐼 = ⌊
𝑇

𝜏
⌋, 

 

(6) 

𝒛𝒗,𝒕̅̅ ̅̅ (𝑥, 𝑦) =
1

|ℤ𝑣,𝑖
𝜏 |

∑ 𝒛𝒗,𝒕(𝑥, 𝑦)

𝑖𝜏≤𝑡≤(𝑖+1)𝜏

, ∀𝑣 ∈ 𝑉𝑡 , 𝑡 ∈ 𝑇, 

 

(7) 

Figure 23 3D presentation 
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where 𝜏, the length of the time interval, is the single decision variable and 𝒛𝒗,𝒕(𝑥, 𝑦) is the input 
data, which represents the location coordinates of the 𝑣-th vehicle at time 𝑡; 𝑖 ∈ 𝐼 is the index 

for time interval; 𝑉𝑡 represents the set of ridesharing vehicles at time 𝑡. 𝑈𝑖 represents the set of 

vehicles during 𝑖-th interval; ℤ𝑣,𝑖
𝜏 ⊂ 𝒵𝑣

𝑆 is the set of coordinate records of 𝑣𝑡ℎ ridesharing 

vehicle during the time interval [𝑖𝜏, (𝑖 + 1)𝜏]; specifically, ℤ𝑣,𝑖
𝜏 = {𝒛𝒗,𝒕(𝑥, 𝑦)|𝑖𝜏 ≤ 𝑡 ≤ (𝑖 + 1)𝜏}; 

𝛼 and 𝛽 are the predefined weights normalized to make the two terms comparable in the 
objective function in the magnitude. An optimal solution of 𝜏 enables the data analysis 
proposed in this study to hold both desired information accuracy and acceptable computation 
load. 

2.3.1.2 Optimal Pixel Size 

This study next determines the pixel size of the cubes in the spatial dimension. In addition to 
the time interval 𝜏, the size of the pixel will also affect the number of the cubes as well as the 
counting of the ridesharing/transit services occurring in each cube. Thus, it will influence the 
computation load as well as interpretation power of the data analysis. See Figure 24 for an 
example. We consider the average speed of the traffic on a road is 𝑣𝑎 and the speed upper limit 
is 𝑣. With the given time interval width 𝜏, if the size of the pixel is too small, such as  the length 
of the edge 𝑙 < 𝜏𝑣𝑎 in Figure 24 (a), it will very likely lead to many empty pixels since the 
majority of vehicles can run across a pixel during a time interval 𝜏. On the other hand, if the size 
of the pixel is too large, such as the length of the edge 𝑙 > 𝜏𝑣 in Figure 24 (b), it will lead to 
overcount since an individual vehicle will have more than one record in the pixel.   

                    

The example above shows that a pixel with the length within [𝑣𝑎𝜏, 𝑣𝜏] will facility the analysis 
better. An improper discretization will lead to many empty cubes or overcount. It will 
notprovide valuable insights and will affect the statistical analysis significantly. Therefore, we 
seek to explore the optimal pixel size so that they can clearly present either complementary or 
competitive relationships between traffic modes. To do that we first formally define a 
complementary or competitive pixel in Definition 1 and 2 through the ridesharing service ratio 
defined in Equation (8) below.  

𝑅 = {𝑟𝑘,𝑖}, 𝑟𝑘,𝑖 = {

𝑁𝑘,𝑖
𝑠

𝑁𝑘,𝑖
𝑁𝑘,𝑖 > 0

−1 𝑁𝑘,𝑖 = 0

, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, (8) 

Figure 24  Examples of improper pixel size. (a) 𝑙 < 𝜏𝑣𝑎, (b) when 𝑙 >
𝜏𝑣. 
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where 𝑁𝑘,𝑖
𝑠  and 𝑁𝑘,𝑖 respectively denote the number of ridesharing trips and total trips going 

through pixel 𝑘 during the 𝑖-th time interval. Equation (8) indicates that 𝑟𝑘,𝑖 ∈ [0,1] for 𝑁𝑘,𝑖 > 0 

and we mark 𝑟𝑘,𝑖 = −1 if it is an empty pixel (i.e., no trips present in the pixel). 

Definition 1 - Complementary Pixel: A pixel presents a complementary relationship between 

the ridesharing and transit services, if and only if its ridesharing service ratio satisfies 𝑟𝑘,𝑖 ∈

[0, 𝜂] ∪ [𝜂, 1], 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼,  where 𝜂  and  𝜂 are given parameters and  𝜂 = 1 − 𝜂.  

Definition 2 - Competitive Pixel: A pixel presents a competitive relationship between the 

ridesharing and transit services if and only if its ridesharing service ratio satisfies 𝑟𝑘,𝑖 ∈

[𝜇, 𝜇] , 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼, where 𝜇, 𝜇 are given parameters, 𝜇 = 1 −  𝜇.  

Definition 3 - Noise Pixel: A pixel cannot present a clear competitive relationship between the 

ridesharing and transit services if its ridesharing service ratio satisfies 𝑟𝑘,𝑖 ∈ [𝜂, 𝜇] ∪ [𝜇, 𝜂] (i.e., 

unidentifiable pixel presenting neither complementary nor competitive relationship) or 𝑟𝑘,𝑖 =

−1 (empty pixel), 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼,  𝜂 = 1 −  𝜂 and  𝜇 = 1 −  𝜇.  

According to Definitions 1 and 2, a complementary pixel indicates that either the transit or the 
ridesharing dominates the service going through the pixel. Potentially, a group of such 
complementary pixels shows one of the two services is not sufficient. This information is very 
valuable to facilitate our data analysis later. However, a competitive pixel shows that neither 
the bus nor the ridesharing presents apparent merits to the trips going through the pixel. 
Accordingly, we consider those pixels presenting either a complementary or competitive 
relationship as informative pixels in contrast to the noise pixels defined in Definition 3. The 
ratios of informative pixels and noise pixels are affected by the schemes of the 3D 
discretization. We next discuss our ideas to search for the optimal discretization scheme. 

First of all, our approaches are more interested in those informative pixels. The discretization 
therefore seeks to generate sufficient informative pixels. Accordingly, an optimization model 
(9)-(12) is developed with the objective to find the optimal number of pixels (𝜅∗), so does the 
size, for maximizing the total number of the informative pixels with a given time interval 𝜏 (see 
the objective function).       

𝑷𝟐: 

max
𝜅

∑(𝑝𝐴𝜅,𝑖 + 𝑞�̅�𝜅,𝑖)

𝐼

𝑖=0

 

 

 
 
(9) 

Subject to, 

𝐴𝜅,𝑖 =
1

𝜅
 ∑ 𝑢𝑘,𝑖

𝜅

𝑘=1

(𝜅), ∀𝑖 ∈ 𝐼 

 

(10) 
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�̅�𝜅,𝑖 =
1

𝜅
 ∑ 𝑣𝑘,𝑖

𝜅

𝑘=1

(𝜅), ∀𝑖 ∈ 𝐼 
 
(11) 

𝜅 ≤ 𝜅 ≤ �̅� (12) 

where 𝜅 is the decision variable, representing the total number of the pixels, each with a square 
shape; 𝑢𝑘,𝑖 and 𝑣𝜅,𝑖 are auxiliary binary variables,  𝑢𝑘,𝑖 = 1 if 𝑟𝑘,𝑖 ∈ [0, 𝜂] ∪ [𝜂, 1], and 0 

otherwise; 𝑣𝑘,𝑖 = 1 if 𝑟𝑘,𝑖 ∈ [𝜇, 𝜇], and 0 otherwise. 𝐴𝜅,𝑖 and �̅�𝜅,𝑖 are the proportion of the 

complementary/competitive pixels over the study region; 𝑝 and 𝑞 are predefined weights 
normalized to make the proportion of the two kinds of pixels comparable. Note that for a given 
study area with size 𝑆, the more pixels present, the smaller the pixel size is. As a proper pixel 
length is within [𝑣𝑎𝜏, 𝑣𝜏], the total number of pixels, 𝜅, is also bounded by [𝜅, 𝜅], where 𝜅 =

[𝑆 (𝑣𝜏)⁄ ]2 and 𝜅 =  [𝑆 (𝑣𝑎𝜏)⁄ ]2.  

Next, given 𝜂 = 1 −  𝜂 and 𝜇 = 1 − 𝜇, we notice that two of the four parameters (e.g., 𝜇 and 

𝜂) will significantly affect the solution of the discretization since they affect the value of 𝑟𝑘,𝑖 

used in Definitions 1-3 so do the values of 𝐴𝜅,𝑖 and �̅�𝜅,𝑖 in the optimization model. More 
exactly, this study names the interval 𝜇 − 𝜂 as an unidentifiable interval (UI). A narrow UI 

loosens the criteria to certify competitive or complementary pixels according to Definitions 1 
and 2. Accordingly, it tends to produce a discretization solution with a few pixels (i.e., a small 
value of 𝜅∗) each with a large size, which may maximize the size/number of the informative 
pixels but result in a low resolution, e.g., a pixel may cover some areas not presenting 
consistent lane-use features. On the other hand, a wide UI tightens the criteria and leads to a 
discretization solution with plenty of pixels (i.e., a large value of 𝜅∗) each with a small pixel size, 
which may lead to more noise pixels as the cost. The determination of the parameters is highly 
data orientated. Thus, this study will perform a sensitivity analysis for the UI in our case study. 
Combining with the land-use analysis, we suggest proper values for the parameters 𝜂, 𝜂, 𝜇 and 

𝜇 in the case study. 

The optimization model 𝑷𝟐 is nonlinear and nonconvex, but with a single integer decision 

variable 𝜅 within [𝜅, 𝜅]. This study thus explores the optimal solution by heuristic approaches 

such as the best first search (BFS) algorithm (Dechter and Pearl, 1985), which is one of the 

efficient sequential search algorithms in discrete optimization. For completeness, we present 

the main idea of this algorithm as follows. The BFS maintains a list named OPEN, which is 

placed with nodes (possible solutions) to be expanded. Initially, the list of OPEN includes a set 

of integer solutions within [𝜅, 𝜅]. Then, the solutions are evaluated through the objective 

function (9). The worst solution is removed from the list and the best solution is expanded to 

include its neighbors in the OPEN list as successors. The heuristic evaluation process is repeated 

until no more successors are found. The best solution remains in the OPEN list is the optimal 

solution.   
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2.3.2 Searching Ridesharing Swarm 

The 3D discretization enables us to capture the competitive/complementary relationship 

between two modes within each individual cube. We can present this result by heatmap, in 

which the color of each cube represents its service rate (see the example shown in Figure 25). 

However, they only provide us the information debris rather than insightful information for the 

service gaps. This motivates us to aggregate the information that individual cubes provide to 

explore the converged insights. Our approach includes two steps. We first slice the 3D space by 

the time interval 𝜏∗ and then explore the service distribution by building the set of heatmaps 

𝒉 = {ℎ𝑖, 𝑖 ∈ 𝐼}, in which the heat in each pixel 𝑘 of heatmap ℎ𝑖 is measured by its service rate 

𝑟𝑖𝑘 defined in Equation (8). A heatmap ℎ𝑖 exhibits the competition relationships within a time 

interval [𝑖𝜏∗, (𝑖 + 1)𝜏∗] over the study region. Next, we project all heatmaps to the spatial 

region and aggregate the heat in each corresponding pixel 𝑘 by averaging the 𝑟𝑖𝑘 over all 

heatmap ℎ𝑖 ∈ 𝒉, i.e., 𝑅𝑘 =
1

𝐼
∑ 𝑟𝑖𝑘𝑖 . Thus, we obtain a new aggregated heatmap 𝐻 over spatial 

region, in which each pixel holds the heat 𝑅𝑘. Through the aggregated heatmap 𝐻, this study 

seeks to conduct two specific analyses to discover the competitive or complementary patterns 

over a region and understand the transit service gaps. 

 

First, we demonstrate the capability of the heatmap 𝐻 to help refine the existing transit 
network by improving the coverage and/or flexibility. Specifically, we mark the regions, where 
ridesharing services are dominant in the heatmap 𝐻, e.g., 𝑅𝑘 ≥ 0.9 as a ridesharing swarm (RS) 
zone. It means that over the aggregated period, most of the ridesharing service trips, no matter 
when and where their ODs are, have passed the RS zones (Figure 25 (a)). These RS regions 
indicate the deficiency of the coverage and/or flexibility of transit services since they attract 
significant ridesharing demand but have limited transit service. Consequently, if the demand is 
consistent, which is implied by consistent number of ridesharing trips between RS zones, we 
adopt the first scheme to refine the current transit backbone network which is building new 
stations in each RS zones and then adding new routes connecting those RS zones (Figure 25(b)). 
This scheme improves the network coverage, and it will potentially attract more transit 

Figure 25  Searching RS zones (a) RS zones in heatmap H; (b) and (c) Potential 
transit hub and routes integrating ridesharing and transit services. 
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passenger demand from ridesharing.  On the other hand, we also observe the case in which the 
demand going through an RS zone is highly dynamic. If this RS zone covers a large area 
surrounded by enough transit services, it indicates on-demand service requests. In this case, we 
propose Scheme 2: implementing microtransit services within the RS zones to accommodate 
the ad hoc demand around the RS zones and connect these demands to nearby transit services. 
Please see an illustration in Figure 25(c) where the microtransit services have flexible routes 
and schedules. Combining with existing ridesharing services, Scheme 2 will potentially improve 
transit usage. Both Schemes 1 and 2 are promising solutions to catch passenger demand 
around RS zones and improve the transit service. Moreover, the inclusion of these RS zones to 
the existing transit network generates more opportunities to improve transit ridership 
near/within RS zones through various modes, i.e., ridesharing, and intermodal trips (see an 
example in Figure 25(b), where the dashed arrow indicates an intermodal trips in which the 
ridesharing feeds transit service). 

2.3.3 Searching First and Last Mile (FLM) gap 

Suffering from the limited coverage and flexibility in the current transit system, bus passengers 
often meet the difficulty of the first and last mile (FLM) gap and switch to ridesharing or private 
auto modes. Emerging microtransit provides a promising solution to make up this deficiency by 
providing on-demand service for a small group of passengers. However, it is very hard to find 
the first and last mile gaps due to the lack of intermodal trip or relevant survey data. This study 
thus developed a new approach to infer the first and last mile gaps through heatmap analysis. 
First, given that the FLM demand usually varies from hour to hour, our analysis is built upon a 

set of hourly aggregated heatmaps �̂� = {ℎ̂𝜔, 𝜔 ∈ 𝒲}, each heatmap ℎ̂𝜔 is aggregated from a 

set of heatmaps ℎ𝑖 ∈ 𝒉 over a time window of one hour. Second, we noticed that those 
“sandwich” patterns, in which a transit dominant zone is immediately connected by multiple 
ridesharing swarm zones (see Figure 26, i.e., 𝐴1𝐵𝐴2), have a great potential to present FLM 
zones. To interpret this thought, we show the correlation between the FLM zones and the 
“sandwich” patterns as follows.    

Figure 26  Schematic representation of first/last mile area pattern. 
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First of all, we consider a large area, such as a big shopping center or residential area. If there 
are transit stops nearby this area, the first/last mile problem happens when the distance 
between the transit stops and origin/destination is beyond the walking distance. Then many 
ridesharing trips will show up in this area. Next, we present the correlation between the FLM 
zones and the “sandwich” patterns on the heatmaps. Take Figure 26 for example, the zones 
with white color (denoated as A zones) represent ridesharing swarm zones. The zones with red 
color (denoated as B zones) are transit dominant zones (𝑅𝑘 < 0.5). Both 𝐴1 and 𝐴2 have low 
transit coverage but have transit stations nearby due to their connection to B zone. In this case, 
the FLM problem may occur when there is a long distance between origin/destination in 𝐴1 
and/or 𝐴2 and nearest transit station in B. Specifically, if many demand travel between 𝐴1 to 𝐴2 
by ridersharing rather than using nearby transit line in B, this implies that the passgeners may 
suffer from first and last mile diffculty. Or, the demand can take intermodal trip (ridesharing 
and bus) to complete the trip between 𝐴1 and 𝐴2. In either case, 𝐴1 and 𝐴2 are the potential 
areas where ridesharing trips or microtransit can help overcome the first and last mile problem. 
The above analysis indicates that if we also noticed extensive ridesharing trips occuring 
between the zones within these patterns such as 𝐴1 ⇆ 𝐵; 𝐴2 ⇆ 𝐵, 𝐴1 ⇆ 𝐴2, it is very likely that 
some RS zones involved in the “sandwich” patterns, i.e. 𝐴1𝐵𝐴2, are candidate FLM zones. These 
ridesharing orders are considered as the FLM-prone orders. The more FLM-prone orders 
observed, the higher possibility the RS zones within the pattern are the FLM zones. 

Motivated by the above finding, we incorporate the ridesharing OD and bus station data into 

our analysis of the averaged heatmap ℎ̂𝜔 ∈ �̂� to search the potential FLM zones. The main idea 
is to first discover the “sandwich” patterns where two ridesharing swarm zones are sandwiched 

by a transit dominated zone on the heatmap ℎ̂𝜔. And then, we identify the FLM candidate 
zones involved in the “sandwich” patterns by referring to the ridesharing OD information. More 
exactly, we filter out zones that have FLM-prone orders, such as 𝐴1 ⇆ 𝐵; 𝐴2 ⇆ 𝐵, 𝐴1 ⇆ 𝐴2, 
among “sandwich” patterns.  

The zone that has more FLM-prone orders has a greater chance to be FLM zone. Therefore, for 
any pixel 𝑘 within the RS zones of “sandwich” pattern, we consider 𝑝𝑘 as the probability that 
pixel 𝑘 is a FLM zone. And the probability 𝑝𝑘 is calculated by the number of FLM orders in pixel 
𝑘 divided by total number of FLM orders throughout the heat map. In this way, we are able to 

create the time-vary FLM order probability heatmaps, �̃� = {ℎ̃𝜔, 𝜔 ∈ 𝒲}, which is the input as 

second channel data in the ConvLSTM model for prediction )(see the paragraph below for 
details). The proposed approach identifies the potential FLM zones/demand spatiotemporally, 
which allows transit agencies to efficiently incorporate flexibility in the services. The identified 
FLM zones are further validated through the bus station density analysis and land use data in 
the validation part of case study. 

2.3.4. Learning Spatiotemporal Service Gaps 

The above section manages to discover the consistent transit coverage and flexibility gaps. 
Relying on those observations, we provide suggestions to refine the existing transit network 
such as adding new bus stations, routes, or microtransit services. However, those findings are 
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obtained from the aggregated heatmaps along a given timeframe. They are static and provide 
limited help for a hybrid transit system to flexibly respond to passenger demand variation over 
different timeframes. To broadly incorporate the flexibility into a transit system, it is important 
to learn the demand dynamics. This study is thus inspired to develop the prediction model in 
this section. 

This study uses an existing two-channel ConvLSTM learning model using the heatmap data, i.e. 

ℎ𝑖 ∈ 𝒉 and ℎ̃𝜔 ∈ �̃� as inputs to predict the transit service gaps, including both ridesharing 
swarms and FLM zones.  The following is our justification for selecting this model. One of the 
key characteristics of these data is the high spatiotemporal correlation. For example, some 
areas on heatmap ℎ𝑖 may share common features, such as areas near the metro hub which 
attract significant mobility needs including ridesharing as well as FLM demand. Moreover, the 

heatmaps, such as 𝒉 and �̃�, are sets of time series data. It’s important to capture this 
spatiotemporal correlation in the prediction model to improve the accuracy. Recent advances 
in deep learning have enabled researchers to model the complex nonlinear relationships. More 
exactly, a convolutional neural network (CNN) has been used to capture complex spatial 
correlation (Zhang et al., 2016) and Long Short-Term Memory network (LSTM) has exhibited 
outstanding performance on time series data prediction. The ConvLSTM model, a combination 
of CNN and LSTM (Xingjian et al., 2015), has demonstrated the satisfied performance to capture 
the spatiotemporal correlation in the data for weather precipitation forecast prediction. Given 
the spatiotemporal characteristics of heatmap data, this study, therefore, uses the ConvLSTM 
model to predict the dynamics of transit service gaps.  

For completeness, we briefly introduce the structure of the ConvLSTM as outlined through 
equation (13). The model learns sequential (temporal) correlations through a memory cell 𝑐𝑡. It 
has three gates (forget 𝑓𝑡, input 𝑖𝑡, output 𝑜𝑡 gates) and two non-gate tanh units. The gates of 
ConvLSTM are able to manipulate the outputs of tanh units and value on the memory cell line, 
which learns temporal correlations. ℎ𝑡 is the output of memory cell at interval t, which is 
controlled by the output gate 𝑜𝑡. The convolution operator between weights and input data 
characterizes the spatial correlation.  

 
𝑖𝑡 =  𝜎(𝑊𝑖 ∗ 𝑋𝑡 + 𝑈𝑖 ∗ ℎ𝑡−1 + 𝑏𝑖) 
𝑔𝑡 = tanh (𝑊𝑔 ∗ 𝑋𝑡 + 𝑈𝑔 ∗ ℎ𝑡−1 + 𝑏𝑔) 

𝑓𝑡 =  𝜎(𝑊𝑓 ∗ 𝑋𝑡 + 𝑈𝑓 ∗ ℎ𝑡−1 + 𝑏𝑓) 

𝑜𝑡 =  𝜎(𝑊𝑜 ∗ 𝑋𝑡 + 𝑈𝑜 ∗ ℎ𝑡−1 + 𝑏𝑜) 
𝑐𝑡 =  𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑔𝑡 
ℎ𝑡 =  tanh (𝑐𝑡) ∘ 𝑜𝑡 

 

 
 
 
(13) 

where b’s are biases for the respective gate. W’s and U’s are forward and recurrent weights, 
respectively. They are all learnable parameters. “∘” denotes element-wise multiplication, and 
“∗” denotes the convolution operator. 
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Moreover, recall that the FLM heatmap, ℎ̃𝜔, is generated upon the analysis of OD information 

and heatmaps �̂�. Therefore, the heatmaps data, �̃� and �̂�, are correlated with each other. This 
motivates us to adopt a two-channel ConvLSTM model, with first channel as heatmap data 

ℎ̂𝜔 ∈ �̂� and second channel as FLM heatmap data, ℎ̃𝜔 ∈ �̃�. This two-channel build-up maintains 
the correlations between different channel data, which is able to accurately and simultaneously 
predict the heatmaps for analyzing the ridesharing swarms and FLM zones. Specifically, the 
input data is a sequence of S × S, two-channel images, or a series of tensors, 𝑋𝑡𝜖𝑅𝑆×𝑆×2. We 
validate the performance of the two-channel ConvLSTM learning model by the case study 
below.  

2.4 CASE STUDY AND RESULTS 

This case study validates the capability of the proposed analysis approach based on the real 
field data. More exactly, we will examine the discretization approach as well as its capability in 
finding ridesharing swarms, and inferring and prediction of passenger demands in different 
levels of variations. 

The case study is built upon the testbed consisting of the transit and ridesharing services data in 
the city of Chengdu. Chengdu is a major city in China and has a population of 7.8 million. As 
shown in Figure 27 , the study area is in the second ring region of the city and covers a square 
region with 5 miles edge length. The ridesharing service data is provided by DiDiChuxing Gaia 
open dataset (https://gaia.didichuxing.com). It involves about 0.2 million trips made by DiDi 
ridesharing services per day from November 1 to November 30, 2016. The profile of the data 
includes ridesharing vehicle trajectory GPS data, which is updated 2 – 4 seconds, and 
ridesharing order request information, which records pick-up and drop-off timestamps and 
locations. The public transit data is collected by the website of Moovit app 
(https://moovitapp.com/). It covers all bus lines and subway lines information in Chengdu city. 
For each line, the profile of the data includes station names, station locations, operation times 
and transit vehicles’ arrival time at each station. Please note that the real time trajectory data 
of transit vehicles is unavailable.  This study will use the schedule and station location data to 
format each trip. The operating time of transit services varies from line to line, but most of 
them start at 6 AM and end at 8 PM to  10 PM. There are a total 1226 transit stations 
distributed within the study area and, in total, 246 transit lines passing through the study area. 
As the study area is 5×5 𝑚𝑖2, there are about 7 transit stations per mile on average. The case 
study is run on a DELL Precision 3630 Tower with 3.60GHz of Intel Core i9-9900k CPU and 16 GB 
RAM in a Windows environment.  

We briefly introduce the procedure the case study follows. The case study will first determine 
the optimal discretization (𝜏∗, 𝜅∗) for DiDi trip data and transit line data in 3D space. The 
heatmap 𝒉 = {ℎ𝑖 , 𝑖 ∈ 𝐼} is then generated based on the optimal discretization for each interval 
𝑖 ∈ 𝐼. Then, we aggregate the heatmap to find RS zones and reveal the locations for new transit 
lines and stations (with microtransit services) (see Section 2.3.2 Searching Ridesharing Swarm). 

Next, we explore the FLM zones by analyzing the heatmaps �̂� = {ℎ̂𝜔, 𝜔 ∈ 𝒲} and ridesharing 

OD information (see Section 2.3.3 Searching First and Last Mile (FLM) gap). Finally, the results 

https://gaia.didichuxing.com/
https://gaia.didichuxing.com/
https://gaia.didichuxing.com/
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are fed into a ConvLSTM network to predict the dynamics of the FLM demand pattern (see 
Section 2.3.4. Learning Spatiotemporal Service Gaps). Last, we also analyze land use patterns of 
RS zones and FLM zones to validate our findings.   

 

2.4.1  Establishing 3D Discretization 

We first establish the 3D discretization (𝜏∗, 𝜅∗) for the trip data involved in this case study. To 
do that, we need to determine the optimal time interval 𝜏∗. The solution time of the program 
𝑷𝟏 is around 20 minutes. And the optimal solution we obtained is 𝜏∗ = 90𝑠, with which we 
averaged about 30 coordinates of each vehicle to locate it in a time interval. Next, we explore 
the optimal 𝜅∗ through the program 𝑷𝟐, which needs to pre-determine the parameters 
(𝜂, 𝜂, 𝜇, 𝜇). By setting 𝜂 = 0.1, 𝜂 = 0.9, 𝜇 = 0.4, 𝜇 = 0.6, it took program 𝑷𝟐 around 2500 

seconds to find the optimal number of the pixels, 𝜅∗ = 282, which indicates a pixel size: 
325m×325m for each cube.  

According to our discussion in Section 3.1.2, we justify the selection of the parameters 𝜂, and 𝜇 

for this case study by doing the sensitivity analysis on the length of the UI, i.e., the length of 

(𝜇 − 𝜂). Mainly, with a given time interval 𝜏∗, we test the performance of the 3D discretization 

under each of the four UIs shown in Table 12, where the UI varies from 0.1 to 0.4 and each 
corresponds to a set of parameters selection. 

Table 12  Sensitivity analysis of UIs 

UI (𝛈, 𝛈, 𝛍, 𝛍) 𝛋∗ Total noise ratio 

0.40 (0.05, 0.95, 0.45, 0.55) 342 0.62 

0.30 (0.10, 0.90, 0.40, 0.60) 282 0.45 

0.20 (0.15, 0.85, 0.35, 0.65) 162 0.37 

0.10 (0.20, 0.80, 0.30, 0.60) 102 0.13 

Program 𝑷𝟐 is run under each UI and generates the optimal solution  𝜅∗ shown in Table 12. 

Upon each optimal discretization scheme (𝜏∗, 𝜅∗), the heatmaps 𝒉 = {ℎ𝑖 , 𝑖 ∈ 𝐼} were generated 

Figure 27  Chengdu second ring 
region 
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and shown as the examples in Figure 28, in which the region completely dominated by transit 

or ridesharing is colored red and white respectively, but the regions where neither transit nor 

ridesharing services show are in black. Accordingly, the complementary areas are in either red 

(transit service-dominant) or white color (ridesharing service-dominant) and competitive 

regions and unidentifiable pixels (see Definition 3) are orange with different intensity. In 

addition, Figure 28(a) illustrates the solution of a 3D discretization, while Figure 28(b) and (c), 

respectively, present a heatmap (10:00:00 - 10:01:30) for the solution with  𝜅∗ = 282 and 𝜅∗ =

162 with the UI equal to 0.3 and 0.2. Note that there are too many cubes to be clearly outlined 

in Figure 6(a). We instead show the height of cubes, 𝜏∗, along time dimension.   

We evaluated the merits of the heatmaps in terms of the land-use pattern and the ratio of 
noise pixels over all pixels in a 3D discretization solution. We are more interested in a 3D 
discretization that has a smaller ratio of noise pixels, because the noise pixels don’t offer much 
insightful information about the service gaps for both service modes. The results in Table 12 
indicate that the UI of 0.3 is better than the UI of 0.4 since the ratio of noise pixels is decreased 
from 0.62 to 0.45. This ratio can be further reduced from 0.45 to 0.13 as the UI decreases from 
0.3 to 0.1 but with the significant loss of the resolution. Specifically, we conducted the land-use 
analysis to examine the resolution of the heatmaps shown in Figure 28(b) and (c). The region 1 
and region 2 (marked out by the dashed outline) are chosen as the benchmark regions. The 
actual land-use analysis shows that region 1 is industrial land with a large waste disposal plant, 
several major intercity railway lines and railway companies. Region 2 mainly consists of parks, 
intercity highways and highway interchange junctions. These results indicate that both regions 
have few mobility needs and limited attractiveness for transit and ridesharing services. We next 
take a look at the heatmap results. The contours of these two regions are clearly outlined in 
Figure 28(b) and they are mainly in black (i.e., no transport services provided). This is consistent 
with the actual land-use analysis. But Figure 28(c) does not demonstrate the same quality of the 
resolution. Thus, we conclude that reducing UI from 0.2 to 0.1 significantly compromises the 

Figure 28  (a) Discretization of transit and ridesharing trip data in 3D space. Land-use 

analysis on heatmaps with different pixel numbers to evaluate resolution. (b) 10:00:00-

10:01:30 heatmap with optimal pixel number 282 (0.3 UI). (c) 10:00:00-10:01:30 heatmap 

with optimal pixel number 162 (0.2 UI).  
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resolution of heatmaps. The above analysis confirms our best choice of UI (= 0.3) for this case 
study.   

2.4.2  Finding Ridesharing Swarm Zones 

According to the approach developed in Section 2.3.2, we project the heatmaps ℎ𝑖 , 𝑖 ∈ 𝐼 to a 2D 

spatial plane and then get the aggregated heatmap 𝐻 shown in Figure 29. Built upon 𝐻, we 

search the ridesharing swarms (RS) on the heatmap 𝐻. The results are shown in Figure 29 (a), in 

which six major RS zones are marked by the dashed line cycles. There are also some small RS 

zones scattered over the heatmap 𝐻. Combined with the land-use data, these major RS zones 

involve a commercial region (marked by a yellow circle on the left side), a residential region 

(marked by a blue circle), a mixed region (marked by a purple circle) including residence 

community, office buildings and shopping centers, and a big theme park (green circle) in 

Chengdu City.  

The land-use results indicate that these RS zones do attract/generate significant demand. On 

the other hand, the heatmap results show that ridesharing services dominate these mobility 

services. These observations together reveal potential deficiency of transit services in either 

coverage or flexibility in those RS zones. In order to provide valuable suggestions for improving 

the transit services in these RS zones, we further investigate the number of ridesharing trips 

between these major RS zones and show the results in Table 13. It is observed that a great 

number of daily ridesharing trips occur between the RS zones 1 and 3 (2531.4 per day), RS 

zones 3 and 4 (2762.8 per day), RS zones 3 and 5 (2878.5 per day), and RS zones 4 and 5 (7617.8 

per day). These results are consistent with the land use features of these RS zones, which are 

either large commercial areas or residential communities near the major metro hub, thus 

attracting significant and stable demand. For those RS zones, we would suggest adding new 

transit stations in these RS zones and additional routes between them (see the blue dashed 

lines, Figure 29 (b)) so that public transit can catch some of the demand currently using 

Figure 29  (a) Identified RS zones on 𝐻 with land use. (b) Potential new transit 
lines, stations and microtransit services. 
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ridesharing services. The mean number of daily trips and standard deviation also provide hints 

on the design of the transit schedule, i.e., line frequency.  

On the other hand, this study would suggest microtransit service for the zones that are 

characterized by high demand in a large area with low inside transit coverage. For example, our 

data analysis observed that the number of daily demands to zones 3 and 2 are around 36,000 

and 15,000 trips per day, which respectively counts for 19.5% and 8% of total ridesharing trips 

of the study area. Moreover, these zones are large, e.g., about 2.69 𝑚𝑖2 for zone 3, with low 

inside transit coverage, but surrounded by enough transit services. These features can be 

observed from the heatmap. Figure 29 (b) uses a black dashed line to outline the areas covered 

by a transit backbone (i.e., they are the red transit dominant pixels and orange competitive 

pixels). These features indicate that integrating on-demand service, e.g., microtransit, 

ridesharing, or mini-bus services into the current transit system will improve the mobility of 

these RS zones. Please note that the approaches of this study help identify the potential areas 

that need better transit or hybrid mobility services. To further judge which guidance fits best to 

these RS zones and how to implement these suggestions properly is out of the scope of this 

study.       

Table 13 Number of trips per day between RS zones 

RS zones 
pair 

Mean/day Standard 
Deviation 

RS zones 
pair 

Mean/day Standard 
Deviation 

(1,2) 250.9 17.6 (2,6) 5.0 1.7 
(1,3) 2531.4 243.5 (3,4) 2762.8 159.5 
(1,4) 463.7 76.2 (3,5) 2878.5 396.2 
(1,5) 215.6 49.7 (3,6) 431.7 76.2 
(1,6) 26.8 7.5 (4,5) 7617.8 709.2 
(2,3) 172.0 15.1 (4,6) 131.0 12.7 
(2,4) 655.9 94.8 (5,6) 850.6 103.9 
(2,5) 333.6 40.8    

 



 Discovering Potential Market for the Integration of 
Public Transportation and Emerging Shared-Mobility Services   

  
70 

2.4.2  Inferring FLM Zones 

To explore the potential FLM zones, we averaged every 40 heatmap ℎ𝑖 , 𝑖 ∈ 𝐼, each of which 

represents trip information in 90 seconds , to generate the aggregated heatmap ℎ̂𝜔, 𝜔 ∈ 𝒲, 

each of which contains 1-hour trip information. Upon �̂� = {ℎ̂𝜔, 𝜔 ∈ 𝒲}, we search those 

sandwich areas and then identify the FLM zones by integrating the OD information. Figure 30(a) 
presents an example of the results, in which the FLM zones are marked by the yellow dashed 
cycle. The whiter the pixel, the greater number of prone-FLM orders the pixel has. Due to the 
lack of intermodal trip data, we validate these FLM zones by integrating bus station data and 
land-use data. Specifically, we agree with the criterion that an FLM zone often occurs in areas 
with lower transit density than the surrounding areas. This situation likely pushes passenger 
demand to use ridesharing or other traffic modes since the demand needs a long walking 
distance to approach nearby transit backbone lines. With this observation, we compared the 
transit service density within the FLM zones with surrounding areas to validate the FLM zones. 
Figure 30(b) presents the map of bus station distribution. Each white pixel includes around 50 
bus stations, while the black pixel does not possess bus stations. By integrating Figure 30(a) and 
Figure 30(b), we obtain Figure 30(c), in which the color of the pixel contour represents the heat 
of FLM intensity and the pixel color represents the density of bus stations therein. We observed 
that all the FLM pixels are quite dark inside but bright in the surrounding contour. Therefore, 
the FLM zones we found indeed have lower transit service density than the surrounding areas, 
which is consistent with our criteria. This observation validates the FLM zones we found.   

Figure 30  Identified FLM zones (a) Identified FLM zones (b) transit station 
distribution map. (c) Overlap of FLM zones and transit services distribution 
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Next, we consider that an attractive FLM area should generate enough demand. This motivates 
us to validate the FLM zones by examining the land-use of the study region. We selected the 
top nine  potential FLM zones found in this case study and checked the corresponding land use 
in Gaode Map. The results are shown in Figure 31, in which commercial areas (building 
offices/malls/hotels) are marked by yellow, while residential areas are blue. We can see that all 
identified FLM zones are either commercial or residential areas, which have a high population 
density. Specifically, zones (1, 3, 4, 8, 9) are those areas located around a metro line or within 
suburban areas. In addition, the map data indicate that these districts are quite large but with 
sparse transit service. There are, indeed, the FLM zones that are not well connected to the 
existing backbone transit lines. Here, shared mobility service such as ridesharing or microtransit 
services is a good complement to the backbone transit lines. We also noticed that Zones (2, 5, 
6, 7) with low transit service are far away from a metro line. They are typical transit deficiency 
zones, where new transit routes are needed to make up the service gaps. Overall, the case 
study shows our approach works efficiently to find FLM zones and will provide valuable 
information to refine current transit networks. 

2.4.3  Predicting FLM     

We next demonstrate the performance of the machine learning model to predict the 
spatiotemporal service gaps. Specifically, we implement the ConvLSTM using the framework 
proposed by (Xingjian et al., 2015). Specifically, the model is implemented using the Keras API. 
It consists of five layers. The first and third layers are ConvLSTM with 120 size 2×2 kernels and 
80 size 3×3 kernels, respectively. The second and fourth layers are batch normalization. Finally, 
we used 2 × 2 × 2 kernels to get output shape. Table 14 provides details of the model 
parameters.  

Figure 31  Land use validation for top FLM zones. Commercial area (    ), 
residential area (    ).  
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Table 14 Description of the ConvLSTM architecture used in the study 

Layer (type) Output Shape Param Number 

ConvLSTM2D (None, None, 28, 28, 120) 234720 

Batch Normalization (None, None, 28, 28, 120) 480 

ConvLSTM2D (None, None, 28, 28, 80) 576320 

Batch Normalization (None, None, 28, 28, 80) 320 

Conv3D (None, None, 28, 28, 2) 1282 

Total params 813122 

Trainable params 812722 

Non-trainable params 400 

 

We use Mean Average Percentage Error (MAPE) and Location Prediction Error (LPE) to evaluate 
the performance of ConvLSTM network, which are defined as follows: 
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where �̂�𝑖+1
𝑘 , 𝑦𝑖+1

𝑘  are the prediction and real value of pixel k for time interval 𝑖 + 1. �̂�𝑖+1
𝑘 , 𝛿𝑖+1

𝑘  
take 0-1 values, indicates whether pixel 𝑘 is FLM zone. 𝜅 is the total number of pixels in an 
image. The goal of FLM prediction is to tell where there are potential FLM zones in the near 
future to help planning and scheduling of FLM micro-bus service. Therefore, LPE is adopted to 
evaluate the performance of FLM prediction. Note that we focus on the location prediction 
accuracy of FLM zones.  

The training data consists of ℎ̂𝜔 ∈ �̂� as first channel input and corresponding ℎ̃𝜔 ∈ �̃� as second 

channel input. The output is the two-channel prediction: ℎ̂𝜔 and  ℎ̃𝜔 in the next time interval. 
The model is trained with the first three weeks of data. The last week of data is used for 
validation. The model achieves 28.42% (MAPE) for the first channel and 4.22% (LPE) for the 
second channel. Therefore, the model exhibits high accuracy in predicting the locations of FLM 
zones, which provides promising radar for the FLM demand and the corresponding ridesharing 
or microtransit services.  

Moreover, the prediction results also indicate the time-variant characteristics of the FLM 
demand. For example, Figure 32 (a) to (c) indicates the interesting dynamics of FLM demand 
during the period covering morning peak hour (8:00-9:00), secondary-peak hour (9:00-10:00) 
and evening peak hour (18:00-19:00). More exactly, we noticed that the commercial zone (big 
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shopping centers) on the upper-left corner has lower FLM demand during 8:00 to 9:00. This is 
reasonable since most of shopping malls are closed at that time. Moreover, the FLM demand in 
the residential zone, i.e. 𝑟1, during morning and evening peak hours is higher than that during 
the secondary-peak hour. This observation indicates fewer work trips occurring during 
secondary-peak hour. We also notice that the residential zone 𝑟2 consistently has high FLM 
demand. This is because the new metro hub nearby attracts a stable and significant FLM 
demand, which calls for the transit service coverage in the area of 𝑟2 by either creating new 
transit station (inflexible service) or providing microtransit (flexible service). These interesting 
findings uncover the dynamics of potential transit demand and benefit future hybrid transit 
system development.  

 

2.5 CONCLUSION 

This study developed an innovative approach to analyze transit and ridesharing trip data for 
discovering mobility needs with different levels of dynamics to support the development of 
hybrid urban public transport systems involving both transit and on-demand services. More 
exactly, we think the complicated competitive and complementary relationship between transit 
and ridesharing trips can reflect the deficiency in the flexibility and coverage of the existing 
transit services and provide valuable guidelines to integrate transit service with on-demand 
mobility services. To uncover this hidden knowledge in the trip data, we developed the novel 
3D trip data analysis approach, which first meshes trip data into an optimal 3D discretization 
with uniform cube size, and then collects information from each cube to form the heatmaps. 
Built upon the heatmaps, we examined the ridesharing swarm zones, which help discover the 
potential deficiency of the flexibility and coverage of existing transit services, and then provide 
suggestions for either refining the existing transit network and schedules or integrating 
ridesharing or microtransit services. Next, we developed a new approach to infer the first/last 
mile zones by discovering the “sandwich” patterns on the aggregated heatmaps. The identified 
first/last mile zones provide guidelines for integrating microtransit and/or ridesharing services. 
Last, feeding the heatmaps into a two-channel ConvLSTM model, this analysis predicts the 

Figure 32  Prediction of time-vary FLM heatmap hFLM. FLM heatmap of (a) 8:00-

9:00, (b) 9:00-10:00, (c) 18:00-19:00. Whiter pixel indicates a higher possibility of 

FLM demand. 
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dynamics of the spatiotemporal service gaps, which will help the hybrid urban public transport 
system make strategic plans for involving both public transit and on-demand services. A case 
study conducted for the second ring region of Chengdu, China validates the effectiveness and 
capability of our analysis approach. This study is our first attempt to discover transit service 
gaps by integrating transit and ridesharing trip data. The analysis can be extended to involving 
other mobility modes that transit competes with such as bike-sharing and private auto. Even 
though this paper primarily used trip data, the developed approach can incorporate other data, 
such as demographic and weather data to reach a more comprehensive understanding of 
transit service gaps and improve the prediction accuracy. 
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3.0 RECOMMENDATIONS  

This study can be extended in a number of directions. First, the findings derived from Task 1 
and 2 may be limited to the dataset collected from different cities, the second ring area of 
Chengdu and the Orlando metropolitan area. Future research can be extended to a 
comprehensive case study based on a complete dataset in a city and investigating the 
transferability of the findings. Task 1 and Task 2 can be integrated in this future work. More 
exactly, the approaches developed by Task 2 will first identify the areas with the service gaps in 
the temporal-spatial transit service network. Built upon the potential areas found in Task 2, the 
approaches in Task 1 can further analyze the demand characteristics in those potential areas so 
that we are able to provide proper suggestions for integrating microtransit and/or ridesharing 
into the existing transit network or for adding/adjusting the transit network and service. 

Second, the analysis for the supply market is our first attempt to discover transit service gaps by 
integrating transit and ridesharing trip data. This analysis can be extended to incorporate other 
mobility data and modes that transit competes for demand such as bike-sharing and private 
auto. Finally, the supply market analysis primarily used trip data. The developed approach can 
also incorporate other data, such as demographic and meteorological data to reach a more 
comprehensive understanding of transit service gaps and improve the prediction accuracy. 
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4.0 APPENDICES   
 

4.1 Appendix A – Acronyms, abbreviations, etc. 
 

Acronyms Definition 

ADA Americans with Disabilities Act 

AIC Akaike’s Information Criterion 

AMoD Autonomous Mobility-On-Demand  

aTaxis Autonomous Taxis 

AV Autonomous Vehicle 

BART Bay Area Rapid Transit 

BIC Bayesian Information Criterion 

BRT Bus Rapid Transit 

CBG Census Block Group 

CBSA Core-Based Statistical Area 

CGT Connetics Transportation Group 

ConvLSTM Convolutional Long Short Term Memory 

CTA Chicago Transit Authority 

EPA Environment Protection Agency 

FLM First and last mile 

GIS Geographic Information Systems 

GTFS General Transit Feed Specification 

HH Household 

HU Housing Units 

KNR Kiss-and-Ride 

LPE Location Prediction Error 

LRT Log-Likelihood Ratio Test 

LSTM Long Short Term Memory 

MAPE Mean Average Percentage Error 

MNL Multinomial Logit 

MSA Metropolitan Statistical Areas 

PNR Park-and-Ride 

RP Revealed Preference 

RSG Resource Systems Group 

SAEV Shared Autonomous Electric Vehicles  
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Acronyms Definition 

SAV Shared Autonomous Vehicles 

SC Schwarz Criterion 

SLD Smart Location Database  

SP Stated Preference 

TNC Transportation Network Company 

VMT Vehicle Miles Traveled  

 

4.2 Appendix B – Associated websites, data, etc., produced 
 

Table 15 Model Results for Access Mode 

Base Category  Parameter Wheelchair Micro-
mobility 

Carpool TNC or 
Taxi 

Drove 
Alone 

 Intercept -6.5879 
(0.0023) 

-3.6756 
(0.0012) 

-3.7920 
(0.0019) 

-5.2544 
(0.0033) 

-2.9104 
(0.0011) 

Access Length Distance from the origin to 
transit stop (mile) 

 1.3802 
(0.0004) 

1.0966 
(0.0004) 

1.2077 
(0.0009) 

0.8382 
(0.0011) 

Destination Place  Airport -0.6220 
(0.0765) 

0.6333 
(0.0141) 

1.6289 
(0.0077) 

4.5079 
(0.0080) 

0.7242 
(0.0208) 

Medical, Hospital -1.7809 
(0.0145) 

0.1199 
(0.0061) 

0.4373 
(0.0057) 

-0.7863 
(0.0345) 

0.1350 
(0.0102) 

Sporting Events -0.9363 
(0.0944) 

0.9780 
(0.0144) 

3.4428 
(0.0080) 

-3.0877 
(0.4182) 

2.3677 
(0.0155) 

University/college -0.3235 
(0.0214) 

0.7579 
(0.0050) 

0.1250 
(0.0060) 

1.0043 
(0.0122) 

1.0782 
(0.0064) 

Origin Place  Shopping -0.3878 
(0.0088) 

-0.5704 
(0.0085) 

-0.6115 
(0.0071) 

0.3203 
(0.0171) 

-0.3722 
(0.0111) 

Social Visit 0.7676 
(0.0057) 

0.2216 
(0.0048) 

0.4953 
(0.0041) 

0.2782 
(0.0125) 

-0.2334 
(0.0104) 

Transfer Number of transfers from 
the origin 

-0.1726 
(0.0033) 

-0.2860 
(0.0021) 

-0.2565 
(0.0019) 

-0.2274 
(0.0060) 

-0.4630 
(0.0036) 

Number of transfers to the 
destination 

-0.1730 
(0.0035) 

-0.3844 
(0.0022) 

-0.2476 
(0.0019) 

-0.1449 
(0.0052) 

-0.4698 
(0.0035) 

Two-way trip Trip in the Opposite 
Direction-Yes 

0.0474 
(0.0035) 

0.1887 
(0.0016) 

0.0287 
(0.0016) 

-0.3186 
(0.0053) 

0.2456 
(0.0024) 

Visitor  Visitor-Yes -0.6948 
(0.0138) 

-0.8573 
(0.0061) 

0.0533 
(0.0039) 

-0.8857 
(0.0102) 

-0.4065 
(0.0081) 

Time Period  Midday 0.0369 
(0.0033) 

-0.1284 
(0.0021) 

-0.2435 
(0.0020) 

-0.3179 
(0.0061 

-0.2294 
(0.0033) 

Evening -0.2170 
(0.0071) 

-0.0934 
(0.0035) 

-0.2140 
(0.0033) 

-0.7531 
(0.0114) 

-0.6177 
(0.0069) 

Month 
(refernce -January) 

December 0.4852 
(0.0070) 

0.2096 
(0.0039) 

0.0561 
(0.0038) 

-0.1235 
(0.0169) 

-0.2026 
(0.0081) 

February 0.4805 
(0.0035) 

-0.1917 
(0.0024) 

-0.1677 
(0.0023) 

-0.0660 
(0.0081) 

0.1235 
(0.0036) 
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Base Category  Parameter Wheelchair Micro-
mobility 

Carpool TNC or 
Taxi 

Drove 
Alone 

November -0.4131 
(0.0284) 

0.1986 
(0.0137) 

0.1971 
(0.0132) 

0.9348 
(0.0364) 

-0.1984 
(0.0307) 

Age  Young Adults (18-34 years 
old) 

-0.2057 
(0.0054) 

-0.2083 
(0.0019) 

-0.1087 
(0.0017) 

-0.2024 
(0.0052) 

-0.2400 
(0.0029) 

Disability Disability-Yes 5.6846 
(0.0024) 

-0.1091 
(0.0035) 

-0.1853 
(0.0040) 

-0.4964 
(0.0146) 

-0.1382 
(0.0068) 

Driver License Driver License-Yes -0.3566 
(0.0043) 

-0.1025 
(0.0017) 

0.1838 
(0.0015) 

0.2740 
(0.0039) 

0.7187 
(0.0022) 

Ethnicity African American 0.0350 
(0.0034) 

-0.4618 
(0.0020) 

-0.1985 
(0.0018) 

-0.3017 
(0.0058) 

-0.4848 
(0.0033) 

Asian 1.0739 
(0.0166) 

-0.8116 
(0.0132) 

-0.1800 
(0.0085) 

-0.3127 
(0.0220) 

-0.1952 
(0.0135) 

Hispanic -0.4542 
(0.0063) 

-0.4058 
(0.0025) 

-0.1067 
(0.0023) 

0.1160 
(0.0059) 

-0.2807 
(0.0038) 

Gender Male -0.1961 
(0.0032 

1.1017 
(0.0015) 

-0.0648 
(0.0016) 

-0.3152 
(0.0051) 

-0.1626 
(0.0027) 

Number of Vehicles Number of Vehicles (4-7) -0.3735 
(0.0293) 

0.2450 
(0.0082) 

0.7470 
(0.0062) 

 0.6076 
(0.0104) 

HH Income  Middle Income ($20K-$50K) -0.4078 
(0.0048) 

0.2643 
(0.0018) 

0.1236 
(0.0018) 

-0.1562 
(0.0051) 

0.1743 
(0.0030) 

High Income ($50K-$100K) -0.5003 
(0.0142) 

0.4240 
(0.0033) 

0.7081 
(0.0029) 

0.4793 
(0.0075) 

1.3374 
(0.0035) 

Very High Income (More 
than $100K) 

-1.0835 
(0.0639) 

1.8597 
(0.0067) 

4.7172 
(0.0037) 

0.9611 
(0.0317) 

2.6380 
(0.0092) 

- Employment and household 
entropy 

-0.2846 
(0.0036) 

0.0218 
(0.0020) 

-0.0740 
(0.0018) 

-0.3697 
(0.0054) 

-0.1725 
(0.0030) 

- Gross education(8-tier) 
employment density 
(jobs/acre) on unprotected 
land 

-0.0089 
(0.0002) 

0.0059 
(0.0001) 

0.0032 
(0.0002) 

0.0051 
(0.0003) 

0.0046 
(0.0003) 

- Gross entertainment (5-tier) 
employment density 
(jobs/acre) on unprotected 
land 

0.0875 
(0.0009) 

-0.0246 
(0.0007) 

-0.0387 
(0.0006) 

0.0220 
(0.0015) 

-0.0578 
(0.0012) 

- Gross industrial (5-tier) 
employment density 
(jobs/acre) on unprotected 
land 

0.0588 
(0.0012) 

0.0728 
(0.0009) 

-0.0349 
(0.0008) 

0.0837 
(0.0025) 

-0.0138 
(0.0015) 

- Gross office (8-tier) 
employment density 
(jobs/acre) on unprotected 
land 

-0.0479 
(0.0007) 

0.0431 
(0.0006) 

0.0104 
(0.0004) 

 
-0.0074 
(0.0009) 

- Gross residential density 
(HU/acre) on unprotected 
land 

-0.0672 
(0.0007) 

-0.0141 
(0.0004) 

-0.0396 
(0.0004) 

-0.0144 
(0.0011) 

-0.0391 
(0.0006) 

- Intersection density in 
terms of multi-modal 
intersections having three 
legs per square mile 

-0.0143 
(0.0002) 

0.0040 
(0.0001) 

-0.0078 
(0.0001) 

-0.0112 
(0.0003) 

-0.0010 
(0.0001) 
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Base Category  Parameter Wheelchair Micro-
mobility 

Carpool TNC or 
Taxi 

Drove 
Alone 

- Number of jobs per 
household 

0.0158 
(0.0002) 

-0.0040 
(0.0001) 

-0.0052 
(0.0001) 

-0.0156 
(0.0003) 

-0.0157 
(0.0002) 

- Regional Diversity* 0.1822 
(0.0046) 

-0.2039 
(0.0026) 

-0.1312 
(0.0024) 

-0.1877 
(0.0076) 

-0.1952 
(0.0041) 

* regional diversity measures the deviation of the CBG employment rate (jobs per person) from the regional 

average employment rate. 

 

Table 16 Model Results for Egress Mode 

Base 
Category 

Parameter Wheelchair Micro-
mobility 

Carpool TNC or Taxi Drove 
Alone 

 Intercept -13.4066 
(7.9537) 

-4.7544 
(0.3286) 

-3.6420 
(0.3349) 

-6.7790 
(0.7589) 

-5.1356 
(0.6185) 

Egress Length Distance from a 
transit stop to the 
destination (mile) 

  1.3488 
(0.0785) 

1.9382 
(0.0730) 

1.9516 
(0.0743) 

1.9496 
(0.0738) 

Destination 
Place 

Medical, Hospital         1.6571 
(0.5022) 

Shopping   -0.5440 
(0.2947) 

-0.8199 
(0.4143) 

    

University/college     -8.2498 
(1.5404) 

    

Origin Place 
 

Airport     1.6083 
(0.3247) 

1.2316 
(0.6448) 

  

Medical, Hospital 1.3308 
(0.5081) 

      1.2256 
(0.5121) 

Transfer Number of transfers 
from the origin 

  -0.2695 
(0.1084) 

-0.3085 
(0.1304) 

  -1.7543 
(0.3952) 

Number of transfers 
to the destination 

  -0.3313 
(0.1084) 

-0.3416 
(0.1226) 

-2.0377 
(0.6283) 

-1.3293 
(0.3030) 

Two-way trip Trip in the Opposite 
Direction-Yes 

      -0.6058 
(0.3155) 

  

Time Period Midday     -0.5634 
(0.1478) 

  -1.2591 
(0.3002) 

Month 
 

February     -0.3214 
(0.1499) 

-0.8936 
(0.4040) 

  

Disability Disability-Yes     0.3710 
(0.2085) 

    

Driver 
License 

Driver License-Yes       0.9973 
(0.3394) 

2.7107 
(0.4122) 

Ethnicity African American   -0.4305 
(0.1279) 

-0.5889 
(0.1513) 

-0.8613 
(0.3531) 

-1.7695 
(0.2962) 

American Indian   0.8178 
(0.4512) 

-1.7185 
(1.0373) 

    

Asian       1.4318 
(0.5830) 

  

Hispanic   -0.3602 
(0.1457) 

-0.2862 
(0.1597) 

  -1.1175 
(0.2841) 
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Base 
Category 

Parameter Wheelchair Micro-
mobility 

Carpool TNC or Taxi Drove 
Alone 

Gender Male         -0.4788 
(0.2099) 

HH Income 
 

Middle Income ($20K-
$50K) 

  0.5542 
(0.1197) 

  0.9792 
(0.3493) 

  

High Income ($50K-
$100K) 

  0.3693 
(0.2035) 

0.7323 
(0.1930) 

1.4262 
(0.4377) 

0.9137 
(0.2805) 

 Number of 
households in 
Destination CBG that 
own zero automobiles 

    -0.0016 
(0.0007) 

  -0.0042 
(0.0014) 

 Gross entertainment 
(5-tier) employment 
density (jobs/acre) on 
unprotected land of 
destination 

    -0.0880 
(0.0427) 

  -0.2173 
(0.1125) 

 Proportional 
Accessibility to 
Regional Destinations 

  3.9741 
(1.3076) 

3.8362 
(1.1854) 

  4.8458 
(1.2974) 

 Regional Diversity of 
destination 

      1.4658 
(0.4872) 

0.7102 
(0.3621) 

 

 


