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ABSTRACT

The advancement of communication and information technology has enabled travelers to
request, track, and pay for trips via mobile devices. This significant convenience promotes
emerging travel modes such as shared-mobility service including carsharing, bikesharing,
ridesharing (like Uber and Lyft), and private shuttles (like Bay-Area tech shuttles). Shared-
mobility owners have claimed that these new traffic modes will help reduce car ownership and
promote the ridership of public transit, while transit agencies, often unsure of how to coexist
with them, express concerns on the potential competition and potential extra traffic and
associated congestion. These mixed opinions raise the urgent need to fully understand the
potential supply-demand market so that we foster cooperation between public transit and
shared mobility, taking the advantage of both. Motivated by this view, this project conducted a
comprehensive data analysis to answer two questions: 1) Who are the potential demands with
high probability to use intermodal services provided by hybrid systems? (Task 1); 2) Where and
when are the supply gaps to coordinate public transit services with shared-mobility service?
(Task 2). To accomplish these research objectives, the project team draws from several data
sources and approaches to conduct research from both the demand and supply perspectives.
Specifically, Task 1 of this study investigated the influential factors that affect transit users’
choices of access and egress modes, including TNC or taxi, drive alone (PNR), carpool (KNR,
carpool or shuttle), and micromobility modes (bike-sharing, scooters, etc.), using a transit on-
board survey conducted in Spring 2017 for the Orlando metropolitan area. Task 2 of this study
used the transit trip data and ridesharing trajectory data in the second ring region of Chengdu,
China to develop innovative data analysis and machine learning approaches to explore the
transit service gaps in both flexibility and coverage. Together, these efforts provide a snapshot
to better understand the potential service gaps and demands (such as first/last mile gaps and
demand) for promoting hybrid mobility that integrates shared mobility and public transit.
Overall, the outputs of this project will increase the use of sustainable transportation modes,
which may reduce urban congestion, emission, and energy consumptions. Thus, the success of
this project will help establish an eco-friendly transportation system.

Keywords:
Ridesharing-transit hybrid urban public mobility, supply-demand market, first/last mile, trip
data, access/egress mode
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EXECUTIVE SUMMARY

Emerging shared mobility services such as Uber and Lyft have quickly spread in popularity and
may have both positive and negative impacts on public transit. Hybrid public mobility service
systems that incorporate both modes offer a promising win-win solution. However, we still lack
knowledge of when and where to integrate them and who needs such services. Namely, the
spatiotemporal supply-demand market is unclear. To make up this gap, the project team draws
from several data sources and approaches to conduct research from both demand and supply
perspectives. The main findings are summarized as follows. One common interest of both
demand and supply side studies is the first/last mile (FLM) gap of transit service.

Task 1 studied transit on-board survey data for the Orlando metropolitan area and used a
Smart Location Database (SLD, comprehensive land-use attributes) to investigate how land use
characteristics may contribute to users' choice for access and egress modes, beyond the
personal and household attributes. Employing separate multinomial logit models, the study
denotes the following key findings: (i) Trips showing higher potential demand of TNCs for FLM
purposes include airport or university trips, trips with longer access distance, trips made by
persons with higher household income; (ii) Trips with less potential of using TNC for FLM
purposes include sports events, medical visits, visitor trips, and evening trips; (iii) In terms of
the impacts of land-use attributes, higher employment and household entropy and higher
diversity at the origin showed positive impacts on the use of micro-mobility and walking, and
reduced the probability of using motorized modes, including TNCs, for first mile purposes. On
the destination side, higher diversity seemed to encourage the use of TNCs and drive alone
modes for last-mile purposes.

Task 2 studied transit and ridesharing trip data (including O-D information) collected in the
second ring region of Chengdu, China. We considered ridesharing trip data as the detectors to
demonstrate the deficiency of the flexibility and coverage in the existing transit system. By
mashing the 3D space spinning by the trip data to an optimal 3D discretization grid, and
measuring the heat in each cube by the bus or ridesharing service rate, we conducted a
heatmap analysis and obtained four important findings: (i) The ridesharing service swarm (RS)
areas are the potential locations to implement new micro-transit services or transit lines and
stations; (ii) The areas consisted of two ridesharing service swarm zones sandwiched by a
transit service zone (“sandwich” pattern) revealing the potential first/last mile (FLM) service
gaps, where response-on-demand services are needed; (iii) Land use data indicate that RS and
FLM zones are often commercial centers and large residential areas; and (v) Both the RS zones
and FLM zones evolved over time. Our deep learning method is effectively able to predict the
variation.

This study provides useful insights into the deficiency of service coverage/flexibility in existing
transit systems and the factors that may influence transit users’ choice of modes for access and
egress purposes. It may help transit agencies and planners in understanding the potential
supply and demand market for refining existing transit systems considering the integration of
response-on-demand mobility services. The findings derived from Tasks 1 and 2 may be limited
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to the dataset collected from different cities, the second ring area of Chengdu and the Orlando
metropolitan area. We propose future research for conducting a comprehensive case study
based on a complete dataset in a city and investigating the transferability of the findings.
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1.0 TASK 1: ANALYSIS FOR DEMAND MARKET

1.1 INTRODUCTION

Rapidly evolving advanced technologies such as autonomous and connected vehicles, together
with shared mobility services (such as carsharing or ridesourcing), may forever change how
people live and travel. At the same time, major demographic and societal trends across America
may transform future urban mobility. Baby Boomers and Millennials (also called the Gen Ys),
the two largest generations in the U.S. — at 76 million and 80 million respectively, could bring
huge opportunities for public transportation over the next two decades.

Recent surveys have shown an increasing use of new mobility services for first/last mile
connection to transit. However, limited research has been conducted to quantify their impacts
on the existing public transportation service and to identify empirical methods to forecast these
impacts on the future integration of new shared mobility services with transit services. There is
a pressing need to understand how emerging mobility options may reshape the way people
travel and how public transportation may find new opportunities to serve their mobility needs.

This project aims to assess the potential of integrating transit and shared mobility services and
examine how emerging mobility options and vehicle technologies may work together to
influence the transit market. Although many have discussed the future of transit in light of the
emerging technologies and trends, very little is known on how to capture and quantify the
impacts on the transit market. The results of this study will provide important inputs for public
transit agencies and private service providers to formulate regulations and policies and develop
business models that enable the creation of integrated, multimodal, and sustainable mobility
systems that embrace the emerging technologies and advancements.

1.1.1 Objective

This project assesses the potential impacts of emerging technologies and mobility services on
transit market share. The objectives are to

1. Investigate existing market of shared mobility as access and egress mode for transit,
including rider characteristics (income, age group, education, and car ownership, etc.),
travel patterns (origin/destination type, trip length, access/egress distance, etc.), and other
modal features (trip purpose, rail/bus preferences, etc.) and to

2. Explore the spatial pattern of transit trips by different access/egress mode, and evaluate the
impacts of land use and built environment factors on the use of shared mobility for
first/last-mile connections.

1.1.2 Scope

This project focuses on the most recent transit on-board surveys conducted in the Orlando
metropolitan area in 2017. Various land-use data are also integrated with the survey data for
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spatial analysis. These data include the EPA Smart Location Database, the U.S. Census TIGER All
Roads data, and the General Transit Feed Specification (GTFS) data.

1.2 LITERATURE REVIEW

Various researchers have studied the potential effects of shared mobility services and
autonomous vehicle (AV) technologies on public transit ridership. This section focuses on those
that specifically looked at the potential of integrating these options with transit service for
first/last mile solutions.

Jaller et al. (2019) evaluated the benefits of a first-mile transit access program using shared
mobility services. The potential demand shifts from drive-alone mode to the proposed program
were investigated. A simulation and optimization framework was developed and implemented
in the San Francisco Bay Area for access to Bay Area Rapid Transit (BART). Results showed that
by assuming a 25% reduction in travel time, about 18% of increased AM work trips moved from
drive-alone mode to the simulated mode. Moreover, total vehicle miles traveled (VMT)
decreased dramatically in simulated mode, while the generalized cost for trips increased
significantly due to significant travel time increases.

Vakayil et al. (2017) integrated an autonomous mobility-on-demand (AMoD) service with mass
transit service so that AMoD functions as a first-and-last-mile solution. They applied the
simulated system on Washington DC using car2go user trips and hub/frequency data from the
DC Metro system. The results for comparison of AMoD and integrated system (AMoD-Transit)
revealed that most of the trips consist of transit segments during rush hours, but only a very
small percentage of trips are served completely via transit. Moreover, the integrated system
provides a 50% reduction in total VMT, improved mobility, and decreased the number of
walkways, especially during rush hours.

Farhan et al. (2018) evaluated the operation of Shared Autonomous Electric Vehicles (SAEVs)
for various vehicle range and charging infrastructure by using a simulation model for the
first/last mile problem. They applied the proposed simulation model on Tukwila Station
operations in the Seattle metropolitan area. The data included the 2016 origin/destination
survey of light-rail riders. Results demonstrated that the SAEV fleet could be used as a first/last
mile solution increasing mobility and decreasing total VMT through ridesharing. Moreover,
utilizing fast charging technology and long-range vehicles effectively reduces the SAEV fleet and
wait time.

In a study by Shen et al. (2017), the potential effects of on-demand sharing autonomous vehicle
(SAV) on public transit were investigated. They applied an on-demand AV sharing service
instead of low-demand public transit to analyze its effects on the first/last mile problem
focusing on workdays. The proposed framework was applied in Tampines Town in Singapore.
Also, an agent-based simulation model was utilized to evaluate the performance of the
integrated service. Results showed that by sharing the last-mile rides and careful AV fleet
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selection, the integrated service could reduce the average passengers’ out-of-vehicle time,
reduce the occupancy of road resources (VMT), and increase the possibility of financial viability.

Berrada et al. (2019) investigated the potential demand for autonomous taxis (aTaxis) while
considering interactions with transit. They integrated a dynamic supply model (aTaxis) into a
static demand model (scheduled services) and applied the proposed framework to Palaiseau, a
French city located in the Paris metropolitan area. Results demonstrated that aTaxis were more
attractive for relatively short trips (average trip length of 4 km). The study indicated that the
introduction of aTaxies improved service quality and reduced the usage of private cars. For
markets not directly served by bus rapid transit (BRT), aTaxis also significantly reduced the cost
of users.

Alemi and Rodier (2018) investigated the potential market demand for a first-mile transit access
program in the San Francisco Bay Area through agent-based demand and supply modeling. The
study focused on drive alone commuters, who had the opportunity to take the rail to work.
Results showed that by switching to a TNC taxi and taking BART to work, 31% of drive-alone
trips could reduce their generalized travel cost. Moreover, if all commuters shifted to TNC and
BART, total VMT could be decreased by 0.5 million miles during the morning commute period.
Taking into consideration the cost saved by the integrated network, the new service would be
beneficial for low-income households with few cars.

In a study by Pinto et al. (2018), the impacts of first-mile SAV service on transit demand in the
suburban area were investigated. Multinomial logit model and dynamic traffic assignment
models were integrated and implemented in the region served by Chicago Transit Authority
(CTA). Agent-based micro-simulation tools for modeling the movements of travelers and SAVs
were developed. Results indicated that the integration of SAV to the current transit network
reduced the number of driving trips. In different scenarios, the study observed both
substitution effects (some of the transit trips shifted to SAV) and complement effects (transit
became more desirable when integrated with SAV).

Davidson et al. (2017) investigated the pattern of Uber requests and the implications for transit
use. They compared Uber trip origins from two datasets, publicly released Uber origin data
through the New York City Taxi and Limousine Commission, and Uber requests summoned
through a Transit app. Results showed that a higher frequency of Uber requests was recorded
from the transit app users than the general requests within 250 feet of a transit station. Uber
requests through the transit apps also showed greater dispersion throughout the city. This
indicated that Uber served as a viable option to make up gaps in existing transit options.

Stiglic et al. (2018) investigated the potential benefits of ridesharing and public transit
integration, as well as required ride-matching technologies to support this system. They utilized
ride-matching algorithms to find feasible matches. The proposed framework was implemented
on a rectangular metropolitan area of 20 by 10 miles covering a circular urban center with a
radius of 2.5 miles and a sprawling suburban area. The results indicated that the proposed
system significantly improved mobility and increased the use of public transit. Moreover, total
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system wide VMT were reduced, and so were the negative externalities associated with car
travel.

Yan et al. (2018) evaluated traveler responses to a proposed integrated transit system and
ridesourcing services named MTransit, at the University of Michigan Ann Arbor campus. A
survey collecting both revealed preference (RP) and stated preference (SP) data was conducted,
and a RS-SP mixed logit model was fitted. The mixed logit model outputs were applied to
predict demand for MTransit under different scenarios. Results indicated that passengers were
discouraged from using MTransit mainly because of transfers and additional pickups. Moreover,
it was found that if low-ridership bus lines were replaced with ridesourcing services, transit
ridership could increase slightly, and operational costs could decrease. Finally, they found that
when used to provide convenient last-mile connections, ridesourcing could provide a significant
boost to transit.

Hall et al. (2018) investigated whether Uber had substitute or complement effects on ridership.
They applied a difference-in-differences approach on a dataset including transit ridership data,
Uber entry and exit, and a variety of controls for 2004-2015. The results indicated that Uber’s
effect varied based on the Metropolitan Statistical Areas (MSA) population, transit ridership,
and Uber penetration. It was found that Uber’s entry increased public transit ridership in large
cities, but it decreased transit ridership in small cities. Interestingly, Uber’s entry increased the
ridership of transit agencies that had below-median public ridership while decreasing ridership
for the transit agencies with above-median ridership.

Curtis et al. (2019) investigated the partnership between transit agencies and Transportation
Network Companies (TNCs) and the potential opportunities and challenges. TNCs provide
transportation via mobile apps that connect riders to available drivers nearby. This also known
as ridesharing. They gathered information from 20 transit agencies through a survey and a
follow-up interview. They provided comprehensive information about the data in terms of
partnership development and implementation policies. The results indicated that motivations
for engaging in partnerships were strong when TNCs served as a specific type of service, met or
responded to a specific policy goal or challenge, and demonstrated innovation and flexibility to
experiment. Moreover, the most common market of the partnership was the first mile/last mile
service and customers of ADA paratransit or dial-a-ride (DAR) services. Finally, the most
common partnership implementation involved TNC trips subsidized directly by transit agencies.

Table 1 presents a summary of existing studies that looked at the first/last mile connection
perspectives of transit usage. The first group of studies focused on the role and potential of TNC
services, and the second group of studies looked into the effects of integrating AV technologies
into the transit network services.

In general, the literature found positive impacts of integrating ridesharing and AV technologies
with transit services, in terms of reducing VMT, reducing driving trips, saving travel time/cost,
reducing operational cost, and increasing efficiency. Both substitution and complement effects
have been noted in the literature. Most studies employed agent-based modeling and
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simulation techniques to investigate the impacts of the integrated system. Some other papers

incorporated a mode choice component that was able to capture modal shifts.

Table 1

Study

Davidson et
al. (8)

Alemi and
Rodier (6)

Stiglic et al.
(16)

Yan et al.
(11)

Hall et al.
(12)

Jaller et al.
(14)

Curtis et al.

(13)

Vakayil et al.

(2)

Shen et al.
(15)

Farhan et al.

(3)

Pinto et al.

(7)

Summary of Literature

Study

Year

2017

2018

2018

2018

2018

2019

2019

2017

2017

2018

2018

Study Area

New York City,
USA

San Francisco, USA

n/a

University of
Michigan Ann
Arbor campus,
USA

United States

San Francisco, USA

United States

Washington DC,

USA

Singapore

Seattle
metropolitan area,
USA

Chicago, USA

Method

Data comparison

Agent-based
demand and
supply simulation
Ride-matching
algorithms

Mixed logit model
based on SP
scenarios

Difference-in-
differences
approach
Agent-based
model simulation
& optimization

Survey

Simulation

Agent-based
Simulation

Simulation

Integrated mode
choice and

Service Type

TNC

TNC

ridesharing

ridesourcing

TNC

ridesharing

TNC

autonomous
mobility-on-
demand system

on-demand SAV

Shared
Autonomous
Electric Vehicles
(SAEVs)

SAV

Study Purpose

Relationship
between Uber and
transit usage, the
role of smartphone
apps

Benefit evaluation,
mode shift from
drive alone to BART
Benefit evaluation

Evaluate traveler
responses to a
proposed
integrated service

Impacts on transit
ridership

Benefit evaluation,
mode shift

investigated the
partnership
between transit
agencies and TNC
and the potential
opportunities and
challenges.
Service integration,
transit with AMOD
vs. AMOD only,
fixed demand,

Performance
evaluation

Operations and
performance by
vehicle range and
charging
infrastructure

Assess the impacts
on transit demand
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Study Study Study Area Method Service Type Study Purpose
Year
dynamic
assignment
Berrada etal. 2019 Palaiseau, France Simulation with 4- | autonomous taxi, performance
(5) step demand ridesharing evaluation, aTaxis
model replacing BRT in

connecting transit
stations with
destinations.

1.3 DATA AND METHODOLOGY

This section describes the data compiled for this study as well as the modeling methodology
used to analyze the mode choice of travelers’ access and egress segments.

1.3.1 Transit On-Board Survey

A transit on-board survey was implemented by ETC Institute with AECOM, Connetics
Transportation Group (CTG), and Resource Systems Group (RSG) on the team for the transit
agency in the Orlando metro area, the LYNX. The data collection began in January and ended in
April of 2017. The study was conducted in the Orlando metro area, covering the LYNX service
area. In total, the survey collected 13,181 responses.

The 2017 LYNX on-board survey recorded the trip information for each respondent, including
the trip origin, boarding stop, transfer stop(s), if any, alighting stop, and destination of the bus
trip for which the survey took place. The respondent’s home address, together with
sociodemographic information, were also requested. Trip information such as
origin/destination place type, access, and egress modes, boarding and alighting time, fare paid
for the trip, etc., were also collected in the survey.

Figure 1 illustrates the locations involved in a transit journey. Note that home is not necessarily
the origin of a trip as some respondents took the survey on their way home from work.
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Figure 1 Organization of Locations in a Transit Trip

The longitude and latitude of an origin, destination, or home location was derived from
geocoding with the address provided by the respondent. Some respondents did not enter
complete addresses (e.g., missing street numbers) for their homes, origins, or destinations.
Thus, longitude and latitude of these locations were not accurate and were removed from the
analysis of access and egress mode choices.

Figure 2 shows the home locations of the on-board survey respondents. Most of the home
locations of the respondents are centered in Orlando and covered by the LYNX and SunRail
networks. However, it can be seen that some of the respondents were from out of town for
business or sightseeing on the day surveyed (i.e., tourists from out of state are excluded from
this study).
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Figure 2 Home Locations of Survey Respondents

Figure 3 shows a closer look for some of the locations of the respondents’ trip origins. It can be
seen that most of the trip origin locations are next to streets and roads (i.e., TIGER/Line data) as
the locations were geocoded by finding the corresponding addresses on the street GIS data.

Figure 4 shows a similar map for the respondents’ destination locations.



Discovering Potential Market for the Integration of
Public Transportation and Emerging Shared-Mobility Services

Figure 3 Locations of Trip Origins
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Figure 4 Locations of Trip Destinations
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1.3.2 GIS Databases

1.3.2.1 LYNX and SunRail GIS and GTFS Data

To visualize a transit trip from the origin to its destination, the GIS and General Transit Feed
Specification (GTFS) data for all LYNX bus routes and bus stops (LYNX, 2020a) were obtained.
The GTFS is a data specification for transit route and schedule information (GTFS, 2020). GTFS
allows public transit agencies to publish their transit data in a format that can be shared by
different software applications. As many transit transfers occurred between LYNX and SunRail
(i.e., a commuter rail service serving the area), we also obtained the SunRail links and stations
GIS/GTFS data from SunRail (SunRail, 2020).

LYNX provides software application developers with GIS and GTFS data for its bus routes and
stops. The bus routes data provide information for each bus route, including route number,
name, and frequency of service on weekdays, Saturdays, and Sundays. Bus stops data contain
the longitude and latitude, name, address, and amenities information for each bus stop and bus
shelter in the LYNX network. In addition to fixed-route services, LYNX also offers an on-demand
transit service called NeighborLink (LYNX, 2020b). The service areas of NeighborLink are defined
as polygons in LYNX’s GIS database. SunRail also offers GTFS and station GIS data for the
commuter rail services that include schedule, geocoded station locations, and fare information.

GIS data for the streets and roads were also obtained from US Census’s TIGER/Line
geodatabase (US Census, 2020) in order to visualize the streets that connect the origins to the
boarding bus stops. These data were compiled and integrated into the GIS database.

1.3.2.2 Visualizing Access and Egress Distances

In order to visualize how the access modes vary by distances between the origins and first
transit stops, we created a GIS line layer, in which each line connects a pair of origin and the
first transit stop. Figure 5 and Figure 6 shows how the access and egress links vary by distance
and mode in different areas.

It should be noted that the access/egress links shown in Figure 5 and Figure 6 represent the
straight-line distances between the origins/destinations and the corresponding
boarding/alighting stops for visualization purposes only. The actual access/egress movements
should follow street segments. It can be seen in Figure 5 that most of the motorized modes
(i.e., dropped off, Uber, Lyft, taxis, drove alone, and car shares) were used by respondents to
access SunRail stations and some big LYNX transfer stations. Walking and bicycling as access
modes occurred mostly in areas where more LYNX bus routes are available. Figure 6 shows a
similar map for the egress modes.
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Figure 5 Access Mode Variations (Northern Network)
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Figure 6 Egress Mode Variations
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1.3.2.3 Smart Locations Database

To identify the association between transit use and neighborhood land use characteristics in
the study area, we obtained EPA’s Smart Locations Database (SLD), which contains data
measuring the demographics, socioeconomics, and built environment of census block groups
(CBG). Variables for each CBG are divided into seven categories, including demographics,
employment, density, diversity, design, transit, and accessibility (EPA, 2014). Demographic
variables of the SLD were derived from the 2010 Census data. These include population,
households, and household workers by earning levels. Employment variables reflect job
activities and workplace-based socioeconomic characteristics in each CBG.

Density variables summarize the numbers of the population, households, and employment
within a CBG per unprotected block group acreage, which represents a land area that is not
protected from development activity. For CBGs where the unprotected area represented less
than one half of one percent of its total area, density metrics were calculated based on total
land area rather than the unprotected area.

Diversity variables measure the relative mix of land uses within a CBG. These variables measure
the mix of CBG housing unit counts, and employment counts broken down by employment
sectors. Because the sizes of CBG vary significantly with respect to urbanization, there is a
significant limitation in the accuracy of diversity measured by these metrics. For example, a
very large CBG may have a very low-density of diverse land-use activities that are spatially
separated within the CBG. Thus, when an individual part of the CBG is examined, its density and
diversity are both very low. However, the CBG is regarded as having high diversity. Such a
limitation needs to be considered when interpreting the results of analyses involving the
diversity variables.

The design variables measure urban design features in terms of street network density and
street intersection density by facility types (i.e., automobile, multimodal, or pedestrian). It is
important to note that no information regarding the presence or quality of sidewalks or bike
paths is included in the SLD. Thus, a CBG with high densities of streets and intersections is not
necessarily friendly to walkers or bicyclists. This is another data issue that needs to be
considered when analyzing the design variables.

The transit variables measure the availability, proximity, frequency, and density of transit
services for each CBG. Data sources for these variables include GTFS data from over 200 transit
agencies throughout the United States. Data for transit services with fixed guideways such as
rails, streetcars, ferries, and some bus rapid transit routes are also included in the SLD.

The accessibility variables measure the number of jobs and or working-age population
accessible within a 45-minute commute via automobile or transit from a CBG. A travel-time
decay function is used to weigh jobs and workers by travel time such that activities closer to the
origin CBG carry higher weight in accessibility measurement than those that are further away
(EPA, 2014).
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Table 2 summarizes the variables in the SLD by categories.

Table 2

Summaries of Variables in EPA’s Smart Location Database

Categories

Variables

Demographics

Housing units (HU), households (occupied housing units), population, percent of the
population that is working-aged, number of households by car ownership (zero, one,
two or more cars), Percent of households by car ownership (zero, one, two or more
cars), number of workers, number of workers by earing levels (51250/month or less,
$1250 - $3333/month, more than $3333/month), percent of low wage workers
(earning $1250/month or less).

Employment

Total employment, Retail jobs, Office jobs, Industrial jobs, service jobs, entertainment
jobs, education jobs, health care jobs, public administration jobs, number of
employees by earing levels (51250/month or less, $1250 - $3333/month, more than
$3333/month), percent of low wage employees (earning $1250/month or less).

Density

Gross residential density (HU/acre), Gross population density (people/acre), Gross
total employment density (jobs/acre), Gross retail employment density, Gross office
employment density (jobs/acre), gross industrial employment density, gross service
employment density, gross entertainment employment density, gross education
employment density, gross health care employment density, gross public
administration employment density, Gross activity density (employment + HUs).

Diversity

Jobs per household, employment entropy, employment, and household entropy, trip
production and attraction equilibrium index, regional diversity, CBG household
workers/job, deviation of CBG ratio of household workers/job from the regional
average ratio of household workers/job, deviation of CBG ratio of jobs/population
from regional average ratio of jobs/population, DBG household/job equilibrium index

Design

Street network density, street network density by transportation mode-orientation
(automobile, multimodal, or pedestrian), intersection density, intersection density by
transportation model-orientation

Transit

Distance from population-weighted CBG centroid to the nearest transit stop, the
proportion of CBG employment within 0.25 or 0.5mile of a fixed-guideway transit
stop, aggregate frequency of transit service within 0.25 miles of block group boundary
per hour during evening peak period, aggregate frequency of transit service per
square mile

Accessibility

Jobs and working-age population within 45 minutes auto travel time, time-decay
(network travel time) weighted, jobs and working-age population within 45-minute
transit commute, time decay (walk network travel time, GTFS schedules) weighted,
proportional accessibility to regional destinations by automobile: employment and
working-age population accessibility expressed as a ratio of CBG to total Census MSA
(Metropolitan Statistical Area) accessibility, proportional accessibility to regional
destinations by transit: employment and working-age population accessibility
expressed as a ratio of CBG to total Census MSA accessibility, regional centrality index
by automobile: the ratio between a CBG’s accessibility score and the maximum
accessibility score within a core-based statistical area (CBSA), regional centrality index
by transit: the ratio between a CBG’s accessibility score and the maximum
accessibility score within a core-based statistical area (CBSA)
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When combined with the LYNX survey data in a GIS, the SLD variables can be used to identify
the association between access or egress modes and neighborhood land use characteristics at
the origins or destinations. For example, Figure 7 shows how the access modes vary by the
variation of employment to population diversity of the Census block groups. The variable
D2R_JOBPOP is calculated based on the total population and total employment of the block
group (EPA, 2014). It measures the deviation of a block group’s ratio of jobs/population from
the regional average ratio jobs/population. It can be seen that motorized modes with longer
access distances mostly originated from block groups with lower employment to population
ratios, while walk trips with shorter distances occurred in areas with higher ratios.

Figure 7 Access Modes Variation and Employment to Population Diversities



Discovering Potential Market for the Integration of
Public Transportation and Emerging Shared-Mobility Services

1.3.3 Mode Choice Modeling

Two Multinomial logit (MNL) models were developed to analyze the mode choice behavior for
access mode and egress mode, respectively. The multinomial logit model is a popular method
for exploring the potential relationship between mode choice and the determining factors (Lee
et al. 2018). The MNL model has relatively simple mathematical formulation, but at the same
time, it accounts for unobserved utilities (McFadden 1973, Ben-Akiva et al. 1985, Koppelman et
al. 2000).

The fundamental assumption of the MNL model is that each individual has unobservable, latent
utilities for different travel modes, and he chooses the mode that has the highest level of utility
(Schwanen and Mokhtarian 2005). The MNL model uses the maximum likelihood method to
estimate the impact of explanatory variables on each category of the dependent variable, and it
is commonly employed when the dependent variable has more than two categories.

In this model, one category of the dependent variable (usually the one with the highest
frequency) is considered as the reference category, and the probability of being in any category
of the outcome will be compared to the likelihood of being in the reference category.
Therefore, for a dependent variable with M categories, the calculation of M-1 equations is
required.

If m=1is considered as the reference category, then log-odds for choice m is as follows:

P(Y m)
Where,

an,is the constant term for the mth choice,

Pmr is @ vector of coefficients for the mth choice and the kth variable,
X}, is the set of explanatory variables,

Zmi is the predicted log-odds for the ith observation

Consequently, there will be M-1 log-odds, one for each category relative to the reference

category. When there are more than two categories for the dependent variable, the predicted

probability of observation i choosing mth mode would be calculated as follows (Green 2003):
exp (Zmi)
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1.4 RESULTS

This chapter presents the results in two sections. The first section presents descriptive statistics
for the transit trips from the 2017 LYNX survey, including trip characteristics, user
characteristics, and spatial characteristics. The second section presents the mode choice model
results and elaborates on the impacts of various variables on the individuals’ mode choice
behavior for access and egress mode.

1.4.1 Transit Travel Patterns

The survey data included 13 access/egress modes, which were aggregated into six major modes
for this analysis, as shown in Table 3 below. TNC and Taxi trips were combined into one
category, given the very small share of TNC trips, also considering the similarity of the two
services. These taxi trips could represent a potential market for TNC services.

Table 3 Mode Category
Mode Group Origin/Destination Transport Code Origin/Destination Transport From Survey
Walk 1 Walk
8 Taxi
TNC or Taxi 9 Uber, Lyft, etc.
2 Personal Bike
3 Bike share
12 Skateboard
Micromobility 13 Scooter
5 Drove alone and parked
Drive Alone 7 Car share (e.g., Zip Car, etc.)
4 Was dropped off or picked up by someone
6 Drove or rode with others and parked
K&R, Carpool, Shuttle 11 Shuttle
Wheelchair 10 Wheelchair

Table 4 illustrates the mode share for access and egress trips based on weighted survey data.
Some survey records had missing information for access/egress mode. As shown, walking was
the predominant mode for both access (90.5%) and egress (92.4%) trips. The next most popular
mode used for access and egress trips was dropped off/picked up, carpool and shuttle.
Interestingly, micromobility (Bikeshare, Bike, Scooter, Skateboard) showed a non-trivial market
share for both access and egress usage. Only a small portion of trips was made by TNC or taxis
for access (0.3%) and egress (0.5%) trips.
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Table 4 Distribution of Access/Egress Modes
Mode Access Trip Egress Trip
Frequency Percentage Frequency Percentage
Walking 83,076 90.5% 84,811 92.4%
TNC or Taxi 295 0.3% 481 0.5%
Micromobility 2,060 2.2% 2,377 2.6%
Drive Alone 1,700 1.9% 1,186 1.3%
K&R, Carpool, Shuttle 4,535 4.9% 2,809 3.1%
Wheelchair 122 0.1% 123 0.1%
Total 91,787 100.0% 97,787 100.0%

1.4.1.1 Trip Characteristics

Figure 8 presents the percentage of individuals that took the same trip in the opposite direction
by their access and egress mode group. It shows that a majority of those drove alone users,
especially for access to transit, were making round trips, which makes sense as they need to get
the car on the way back with the exception of carsharing users who may just return the car at
the station. On the other hand, most TNC or taxi users did not have a trip in the opposite
direction, which may indicate the flexibility of these modes.

Percentage of Users that Took the Same Trip in
the Opposite Direction

Drove Alone |
Carpool |
icromobitey - E—
wheeicha | —
walking - —
0.0% 20.0% 40.0% 60.0% 80.0%
Figure 8 Trip in Opposite Direction by Mode

Looking into the mode groups by time of day, Figure 9 shows very similar patterns for both
access and egress modes. Evening trips showed much less share than other time periods, as
transit services have limited service hours during the evening period. Compared to other
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modes, drove alone trips were more likely to take place during AM peak hours, probably for
work purposes. Wheelchair users were more likely to use the transit service during the midday
period and much less likely in AM peak hours compared to other users.

Time Period-Access Mode

Drove Alone %

TNCor Taxi - [NZS G 2o 0% 79%

Carpool NS ss e L 2s3% . 9.6%
Micromobility |G o615 AN 1319%
Wheelchair |5 S S o 7oA 13.1%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B AM Peak m Midday ™ PM Peak Evening

Time Period-Egress Mode

orove Alone ST SO g8 9%
™NCor Taxi S G A% I 11.9%
Corpool I SESS I ges% 16w
icromobitey S G 6%
Wheelchair - SEEGS S 15 5%

walking - OSSN sa 13.7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B AM Peak ™ Midday ®PM Peak Evening

Figure 9 Distribution of Time Period by Mode

To further investigate individuals’ trip patterns, Figure 10 presents the distribution of access
and egress mode by trip origin place type. Home and work represent a significant portion of
trips for all modes, as expected. 90% of drove alone trips originated from home. Comparing
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among other place types, wheelchair users showed a significant share of medical trips, while
TNC and taxi users showed higher chances of connecting to airports, especially for egress
purposes.

Access Mode by Origin Place Type

Drove Alone iR
TNCor Taxi [N

Carpool [
Micromobility [ o
Wheelchair [l . IS
Walking [N e ——

.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0%  100.0%

M Airport (passengers only) H College/University (students only) M Hotel
Medical/Doctor/Clinic/Hospital (non-work) B Other B Personal Business

B School K-12 (students) B Shopping M Sightseeing/Restaurant

M Social Visit/Recreation/Religious/Community B Sporting or Special Event H Work

m Work related ® Home

Egress Mode by Origin Place Type
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B School K-12 (students only) W Shopping M Sightseeing/Restaurant
M Social Visit/Recreation/Religious/Community B Sporting or Special Event m Work
m Work related M Your HOME

Figure 10 Trip Origin Place by Mode
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Similarly, Figure 11 presents the distribution by trip destination place type. Besides home, work,
and work-related trips, it shows significant college/university trips taken by TNC or taxies for
access purposes. Interestingly, there was significant use of micromobility for college/university
trips for both access and egress modes. It also can be seen that more than 50% of carpool trips
as egress mode were going home, which probably due to the easiness to prearrange carpool
trips and services with fixed destinations.

Trip Destination Place-Acess Mode

Drove Alone |
TINC or Taxi | —
Carpool N ——
Micromobility I IS @4 @
Wheelchair |

Walking N e ——
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B School K-12 (students only) M Shopping M Sightseeing / Restaurant
M Social Visit/Recreation/Religious/Community B Sporting or Special Event m Work
m Work related ® Your HOME

Trip Destination Place-Egress Mode
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B School K-12 (students only) M Shopping M Sightseeing / Restaurant
M Social Visit/Recreation/Religious/Community B Sporting or Special Event B Work
M Work related M Your HOME

Figure 11 Trip Destination Place by Mode



Discovering Potential Market for the Integration of
Public Transportation and Emerging Shared-Mobility Services

1.4.1.2 User Characteristics

This section focuses on the patterns in user characteristics. Figure 12 shows the usage of access
and egress modes by gender. It shows that males and females were almost equally likely to use
different modes, with the exception of micromobility. A majority of the micromobility users
were male for both access (88.4%) and egress (82.5%) purposes. Relatively speaking, female
users were less likely to use cars or TNC or taxi for both access and egress trips.

Access Mode by Gender
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Figure 12 Distribution of Gender by Mode
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Figure 13 shows the age distribution for different rider types. Compared with other modes,
young adults (18-34 years old) showed a higher propensity to use walk and carpool for access,
and walk and TNC or taxi for egress. Middle-aged adults were less likely to walk and carpool for
both access and egress. Older adults (above 55) showed high shares of using wheelchairs, for
those who did travel using transit services. Interestingly, they were also less likely to use TNC or

taxi services for connecting with transit.

Access Mode by Age Group
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In terms of household income distribution among different user groups, the graphs are
presented in Figure 14. As it moves from walking to drive alone mode, there were lower shares
of low-income households and higher shares of higher-income households. The pattern is
especially clear for access trips. Only 1.3% of the walk access trips and walk egress trips were
made by users with very high household income (more than $100K). Comparing between
access and egress trips, it seems that the impacts of income on access mode choice were more
prevalent than that on the egress mode.

Mode

Mode
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Figure 14 Distribution of Income by Mode
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1.4.1.3 Spatial Characteristics

Figure 15 presents the mode share by trip length for the access and egress segments,
respectively. As expected, for segments less than 1 mile, walking had much higher shares
among the modes than for the longer segments for both access and egress purposes. Generally,
as the access length increased, the share of walking mode decreased, and the share of drive
alone mode increased. Carpool seems to be the most desirable for trips between 1 to 5 miles,
especially for access purposes. Beyond 20 miles, drive alone, and carpool were the most
desirable modes, while other modes were unlikely to be used.
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In terms of the impacts of land use pattern, Figure 16 presents the mode share by urban type,
specifically origin urban type for access trips and destination urban type for egress trips. It
shows that 22% of TNC/taxi access trips originated in rural areas, a much higher proportion of
rural trips than other modes. This indicates a large potential of TNC to connect transit services
in low density areas. Carpool also showed a significant share in connecting transit services to
destinations in rural areas.

Origin Urban Type - Access Mode
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Figure 16 Mode Share by Urban Type
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1.4.2 Mode Choice Model Results

As mentioned, to investigate the factors that impact individuals’ choices behavior for access
and egress trips, two separate multinomial logit models were developed. Walking was
considered as the base category in the models. The model results are discussed from three
perspectives: trip characteristics, user characteristics, and land-use patterns.

The model performance results for both models are presented in Table 5. Akaike’s information
criterion (AIC) is a fined method based on in-sample fit to estimate the likelihood of a model for
predicting future values (Akaike 1974, Mohammed et al. 2015). Schwarz Criterion (SC) or
Bayesian information criterion (BIC) estimates the trade-off between model fit and complexity
of the model (Stone, 1979). A lower AIC or BIC value is preferred. As shown in Table 5, both
access and egress models showed a lower AIC and BIC value in the full finalized model than the
initial model; therefore, indicating acceptable performance.

Another criterion that compares the performance of statistical models is the log-likelihood
Ratio Test (LRT). In this study, the LRT detects whether the improvement in the performance of
the full model compared to the initial model is significant or not. The difference in the log-
likelihood scores for the two models is calculated as:

LL = —Z[LO,gL(,Bfull model) - LOgL(,Binitial model)] (3)

If the value of LL is higher than the value of x4y (a chi-square distributed statistic with degrees
of freedom equal to the difference in the number of estimated parameters for the two models),
It can be stated that the performance of the full model is significantly better than the initial
model (Washington et al. 2011).

Again, both full models showed better goodness-of-fit compared to the initial model, and this
stands true at a 5% significance level.

Table 5 Model Performance Results
Access Model Egress Model

Criterion Initial Model Full Model Initial Model Full Model
AlIC 11512.294 9914.894 9707.009 6528.688
SC 11549.645 11857.156 9744.36 7537.171
-2 LOGL 11502.294 9394.894 9697.009 6258.688
LL 2107.4004 3438.3205
Max-Rescaled 0.255 0.442
R-Square
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1.4.2.1 Access Mode Choice Model
Impacts of Trip Characteristics

Table 6 presents the access mode choice model results for trip-related variables. For a unit
change in the explanatory variable, the logit of each mode (which is in log-odds units) relative
to the reference mode (walking) changes by its respective parameter estimate, given that the

other variables are held constant. The values in the parenthesis represent the standard
deviations for the corresponding factor.

Table 6 Model Results for Trip Characteristics
Base Category | Parameter Wheelchair | Micro- Carpool TNC or Taxi | Drove
mobility Alone
Intercept -6.5879 -3.6756 -3.7920 -5.2544 -2.9104
(0.0023) (0.0012) (0.0019) (0.0033) (0.0011)
Access Length | Distance from the 1.3802 1.0966 1.2077 0.8382
origin to transit stop (0.0004) (0.0004) (0.0009) (0.0011)
(mile)
Destination Airport -0.6220 0.6333 1.6289 4.5079 0.7242
Place (0.0765) (0.0141) (0.0077) (0.0080) (0.0208)
Medical, Hospital -1.7809 0.1199 0.4373 -0.7863 0.1350
(0.0145) (0.0061) (0.0057) (0.0345) (0.0102)
Sporting Events -0.9363 0.9780 3.4428 -3.0877 2.3677
(0.0944) (0.0144) (0.0080) (0.4182) (0.0155)
University/college -0.3235 0.7579 0.1250 1.0043 1.0782
(0.0214) (0.0050) (0.0060) (0.0122) (0.0064)
Origin Place Shopping -0.3878 -0.5704 -0.6115 0.3203 -0.3722
(0.0088) (0.0085) (0.0071) (0.0171) (0.0111)
Social Visit 0.7676 0.2216 0.4953 0.2782 -0.2334
(0.0057) (0.0048) (0.0041) (0.0125) (0.0104)
Transfer Number of transfers | -0.1726 -0.2860 -0.2565 -0.2274 -0.4630
from origin (0.0033) (0.0021) (0.0019) (0.0060) (0.0036)
Number of transfers | -0.1730 -0.3844 -0.2476 -0.1449 -0.4698
to destination (0.0035) (0.0022) (0.0019) (0.0052) (0.0035)
Two-way trip Trip in the Opposite 0.0474 0.1887 0.0287 -0.3186 0.2456
Direction-Yes (0.0035) (0.0016) (0.0016) (0.0053) (0.0024)
Visitor Visitor-Yes -0.6948 -0.8573 0.0533 -0.8857 -0.4065
(0.0138) (0.0061) (0.0039) (0.0102) (0.0081)
Time Period Midday 0.0369 -0.1284 -0.2435 -0.3179 -0.2294
(0.0033) (0.0021) (0.0020) (0.0061 (0.0033)
Evening -0.2170 -0.0934 -0.2140 -0.7531 -0.6177
(0.0071) (0.0035) (0.0033) (0.0114) (0.0069)
Month December 0.4852 0.2096 0.0561 -0.1235 -0.2026
(reference - (0.0070) (0.0039) (0.0038) (0.0169) (0.0081)
January) February 0.4805 -0.1917 -0.1677 -0.0660 0.1235
(0.0035) (0.0024) (0.0023) (0.0081) (0.0036)
November -0.4131 0.1986 0.1971 0.9348 -0.1984
(0.0284) (0.0137) (0.0132) (0.0364) (0.0307)
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As expected, the longer the access length (distance from the origin to the transit station), the
more likely that people would choose micromobility, TNC or taxi, carpool, and drove alone
mode over walking.

Those that went to the airport through transit services were more likely to use TNC or taxi,
followed by carpool and drive alone modes for access to transit. On the other hand, medical
trips and sporting events were less likely to start with TNC or taxi trips for accessing transit.
When people were leaving shopping places, TNC and taxi became highly desirable for
connecting their transit trips.

The number of transfers showed negative impacts on the probability of choosing any of the
modes compared to walking. This may be an indication that those who took transit services
despite the inconvenience of transfers might not have the option to use other modes for cost
considerations or other reasons. Wheelchairs were more likely to take place in the midday
period, while evening trips were likely to be taken by walking compared to AM and PM peak
periods, probably most likely for non-work trips.

Figure 17 presents the model results of trip characteristics in terms of their impacts on the use
of access modes. The largest positive and negative effects on the use of TNC or taxi was going
to an airport trip, and sporting event, respectively. Micromobility had the highest impacts
compared to the access length and going to sports or college/universities. Sports events also
showed high positive impacts on the use of carpool and drove alone modes.

Impacts of Trip Characteristics on Access Mode Choice
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Figure 17 Relative Impacts of Trip Characteristics
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Impacts of User Characteristics

Table 7 presents the impacts of user characteristics on the choice of access mode. Interestingly,
young adults (18-34 years old) showed a negative association with all modes, suggesting that
they were more likely to walk to the transit station. As expected, individuals with disabilities
showed the highest positive impacts on the wheelchair, and the highest negative associations
with TNC or taxi. This may be because most TNC or Taxi services were not fully compatible with
the needs of these users. Households with 4 to 7 vehicles were more likely to choose carpool,
drive alone, and micromobility over walking.

As expected, individuals with a driver's license were likely to drive or carpool to use transit
services. In view of ethnicity, African Americans and Asians were more likely to use wheelchairs
and walking than other modes. Hispanics showed a higher propensity of using TNC or taxi,
followed by walking. Male users were more likely to use micromobility modes than females.

In terms of household income, middle-income ($20K-$50K) users were more likely to choose
micromobility, followed by driving or carpooling, whereas they were less willing to use TNC or
taxi, probably due to cost associated with these modes. Users with high and very high
household income showed a high inclination to drive or carpool to access transit services.

Table 7 Model Results for User Characteristics
Base Category | Parameter Wheelchair | Micro-mobility | Carpool TNCor Taxi |Drove Alone
Intercept -6.5879 -3.6756 -2.9104 -5.2544 -3.7920
(0.0023) (0.0012) (0.0011) (0.0033) (0.0019)
Age Young Adults (18-34 |-0.2057 -0.2083 -0.1087 -0.2024 -0.2400
years old) (0.0054) (0.0019) (0.0017) (0.0052) (0.0029)
Disability Disability-Yes 5.6846 -0.1091 -0.1853 -0.4964 -0.1382
(0.0024) (0.0035) (0.0040) (0.0146) (0.0068)
Driver License |Driver License-Yes -0.3566 -0.1025 0.1838 0.2740 0.7187
(0.0043) (0.0017) (0.0015) (0.0039) (0.0022)
Ethnicity African American 0.0350 -0.4618 -0.1985 -0.3017 -0.4848
(0.0034) (0.0020) (0.0018) (0.0058) (0.0033)
Asian 1.0739 -0.8116 -0.1800 -0.3127 -0.1952
(0.0166) (0.0132) (0.0085) (0.0220) (0.0135)
Hispanic -0.4542 -0.4058 -0.1067 0.1160 -0.2807
(0.0063) (0.0025) (0.0023) (0.0059) (0.0038)
Gender Male -0.1961 1.1017 -0.0648 -0.3152 -0.1626
(0.0032 (0.0015) (0.0016) (0.0051) (0.0027)
Number of Number of Vehicles -0.3735 0.2450 0.7470 0.6076
Vehicles (4-7) (0.0293) (0.0082) (0.0062) (0.0104)
HH Income Middle Income ($20K- |-0.4078 0.2643 0.1236 -0.1562 0.1743
$50K) (0.0048) (0.0018) (0.0018) (0.0051) (0.0030)
High Income ($50K- -0.5003 0.4240 0.7081 0.4793 1.3374
$100K) (0.0142) (0.0033) (0.0029) (0.0075) (0.0035)
Very High Income -1.0835 1.8597 4.7172 0.9611 2.6380
(More than $100K) (0.0639) (0.0067) (0.0037) (0.0317) (0.0092)
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Figure 18 illustrates the impacts of user characteristics on the use of different modes. It shows
that income and disability status had the most significant impacts on the choice of access
mode. The use of micromobility was mostly impacted by gender and ethnicity.

Impacts of User Characteristics on Access Mode Choice
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HH Income- Very High Income (More than $100K) 1 | I
HH Income- High Income (S50K-$100K) I |
HH Income- Middle Income ($20K-$50K) [ N |
Gender-Male N
Ethnicity-Hispanic Ll |

Ethnicity-Asian T .

Ethnicity-African American N .

Driver License-Yes -
Disability-Yes I I
Age-Young Adults (18-34 years old) | B |

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11

H Drove Alone TNC or Taxi Carpool ® Micromobility B Wheelchair

Figure 18 Relative Impacts of User Characteristics
Impacts of Land Use Characteristics

Table 8 summarizes the model results for land-use variables. For the access model, we used
variables describing the land use patterns for the origin at the census block group level. As it
shows, higher employment and household entropy showed a positive impact on the use of
micromobility modes and reduced the probability of using other non-walk modes.

In terms of employment density, education employment seemed to be associated with higher
usage of micromobility, TNC or taxi, drove alone, and carpool modes. Interestingly
entertainment employment led to higher use of TNC or taxi, wheelchair, and walking than other
modes. Industrial employment showed negative impacts on the use of carpool and drive alone
modes, while office employment was associated with higher use of micromobility and carpool.
High residential density seemed to discourage the use of all modes but walking, while
intersection density showed positive impacts on the use of micromobility modes. Surprisingly,
the employment rate showed negative impacts on the use of all modes compared to walking
except for the wheelchair.

Figure 19 presents the impacts of land-use patterns. Employment and household entropy and
regional diversity had the most influential impacts among the land-use variables. Employment
and household density had the highest negative associations with the use of TNC or taxi and
drive alone mode. Regional diversity had the highest negative impact on micromobility modes.
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Table 8 Model Results for Land-Use Patterns
Parameter Wheelchair | Micro-mobility |Carpool |TNC or Taxi | Drove Alone
Intercept -6.5879 -3.6756 -2.9104 |-5.2544 -3.7920
(0.0023) (0.0012) (0.0011) |(0.0033) |(0.0019)
Employment and household entropy -0.2846 0.0218 -0.0740 |-0.3697 -0.1725
(0.0036) (0.0020) (0.0018) |(0.0054) (0.0030)
Gross education(8-tier) employment -0.0089 0.0059 0.0032 0.0051 0.0046
density (jobs/acre) on unprotected land | (0.0002) (0.0001) (0.0002) |(0.0003) (0.0003)
Gross entertainment (5-tier) employment | 0.0875 -0.0246 -0.0387 |0.0220 -0.0578
density (jobs/acre) on unprotected land | (0.0009) (0.0007) (0.0006) |(0.0015) (0.0012)
Gross industrial (5-tier) employment 0.0588 0.0728 -0.0349 |0.0837 -0.0138
density (jobs/acre) on unprotected land | (0.0012) (0.0009) (0.0008) |(0.0025) (0.0015)
Gross office (8-tier) employment density |-0.0479 0.0431 0.0104 -0.0074
(jobs/acre) on unprotected land (0.0007) (0.0006) (0.0004) (0.0009)
Gross residential density (HU/acre) on -0.0672 -0.0141 -0.0396 |-0.0144 -0.0391
unprotected land (0.0007) (0.0004) (0.0004) |(0.0011) |(0.0006)
Intersection density in terms of multi- -0.0143 0.0040 -0.0078 |-0.0112 -0.0010
modal intersections having three legs per |(0.0002) (0.0001) (0.0001) |(0.0003) (0.0001)
square mile
Number of jobs per household 0.0158 -0.0040 -0.0052 |-0.0156 -0.0157
(0.0002) (0.0001) (0.0001) |(0.0003) (0.0002)
Regional Diversity* 0.1822 -0.2039 -0.1312 |-0.1877 -0.1952
(0.0046) (0.0026) (0.0024) |(0.0076) |(0.0041)

* regional diversity measures the deviation of the CBG employment rate (jobs per person) from the regional
average employment rate.

Impacts of Land-Use Patterns on Access Mode Choice
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Figure 19 Relative Impacts of Land-Use Patterns
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1.4.2.2 Egress Mode Choice Model
Impacts of Trip Characteristics

Table 9 below presents the model results of the egress mode choice model in terms of trip
attribute variables. It shows that as egress length increased, the probability of using motorized
mode and micromobility modes increased as well. In terms of the impacts of destination place
type, users going to medical visits or hospitals were more likely to drive from transit stops to
their destinations, while college/university students were less likely to carpool. Users going to
shopping places were less likely to use micromobility and carpool modes for last-mile
connection. On the other hand, users coming from airports were more likely to use carpool
(including being picked up) and TNC or taxi modes for egress trips, and those coming from
medical visits or hospitals showed a higher propensity of using the wheelchair or drive alone
mode for the egress link.

Similar to the access mode choice model, the number of transfers showed negative impacts on
the probability of choosing the motorized modes for egress purpose compared to walking.
Carpool and drive alone were less likely to be used in the midday period.

Table 9 Model Results for Trip Characteristics
Base Parameter Wheelchair | Micro- Carpool TNC or Taxi | Drove
Category mobility Alone
Intercept -13.4066 -4.7544 -3.6420 -6.7790 -5.1356
(7.9537) (0.3286) (0.3349) (0.7589) (0.6185)
Egress Length ?r'::‘z:‘:;:r:m :he 1.3488 1.9382 1.9516 1.9496
destination (mile) (0.0785) (0.0730) (0.0743) (0.0738)
Destination Medical, Hospital 1.6571
Place (0.5022)
Shopping -0.5440 -0.8199
(0.2947) (0.4143)
University/college -8.2498
(1.5404)
Origin Place Airport 1.6083 1.2316
(0.3247) (0.6448)
Medical, Hospital 1.3308 1.2256
(0.5081) (0.5121)
Transfer Number of transfers -0.2695 -0.3085 -1.7543
from the origin (0.1084) (0.1304) (0.3952)
Number of transfers -0.3313 -0.3416 -2.0377 -1.3293
to the destination (0.1084) (0.1226) (0.6283) (0.3030)
Two-way trip | Trip in the Opposite -0.6058
Direction-Yes (0.3155)
Time Period Midday -0.5634 -1.2591
(0.1478) (0.3002)
Month February -0.3214 -0.8936
(0.1499) (0.4040)
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Figure 20 presents the impacts of trip characteristics on egress mode choice. Egress length
showed great impacts on the use of all four motorized modes. College/university trips showed
the largest negative impact on carpooling. The number of transfers showed great negative
impacts on the use of TNC or taxi or drive alone modes. Medical or hospital trips (either as the
origin or destination) were more likely to use drive alone mode for last-mile connection.

Impacts of Trip Characteristics on Egress Mode Choice
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Figure 20 Relative Impacts of Trip Characteristics

Impacts of User Characteristics

Table 10 presents the model results for user characteristics in terms of their impacts on egress
mode choice. Users with disabilities showed a higher probability of carpool or being picked up
by others than using other modes. Those with driver’s licenses were more likely to drive or use
TNC or taxi for their egress trips.

Looking at ethnicity, African Americans and Hispanics were more likely to walk; Asians showed
a higher propensity of using TNC or taxi services, while American Indians showed higher
preferences of micromobility and less preference or carpooling for egress linkage. Interestingly,
male users showed a lower probability of using drive alone mode than female users.

In terms of household income, middle-income ($S20K-$50K) users were more likely to choose
micromobility, followed by TNC or taxi. Users with high household income showed a high
inclination to use TNC or taxi services for the last mile, followed up drive alone, carpool and
micromobility.

Figure 21 presents the impacts of user characteristics.
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Table 10 Model Results for User Characteristics
Base Category | Parameter Wheelchair Micro-mobility | Carpool TNC or Taxi Drove Alone
Intercept -13.4066 -4.7544 -3.6420 -6.7790 -5.1356
(7.9537) (0.3286) (0.3349) | (0.7589) (0.6185)
Disability Disability-Yes 0.3710
(0.2085)
Driver License Driver 0.9973 2.7107
License-Yes (0.3394) (0.4122)
Ethnicity African -0.4305 -0.5889 -0.8613 -1.7695
American (0.1279) (0.1513) | (0.3531) (0.2962)
American 0.8178 -1.7185
Indian (0.4512) (1.0373)
Asian 1.4318
(0.5830)
Hispanic -0.3602 -0.2862 -1.1175
(0.1457) (0.1597) (0.2841)
Gender Male -0.4788
(0.2099)
HH Income Middle 0.5542 0.9792
Income (0.1197) (0.3493)
($20K-$50K)
High Income 0.3693 0.7323 1.4262 0.9137
($50K-$100K) (0.2035) (0.1930) | (0.4377) (0.2805)
Impacts of User Characteristics on Egress Mode Choice
HH Income- Middle Income ($20K-$50K) I
HH Income- High Income ($50K-$100K) I |
Gender-Male I
Ethnicity-Hispanic T B ]
Ethnicity-Asian
Ethnicity-American Indian ]
Ethnicity-African American [ I
Driver License-Yes |
Disability-Yes
-4 -3 -2 -1 0 1 2 3 4
H Drove Alone TNC or Taxi Carpool H Micromobility B Wheelchair

Figure 21 Relative Impacts of User Characteristics
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Impacts of Land Use Characteristics

Table 11 presents the model results for land use patterns at the destination in terms of the
impacts on the choice of egress mode. It shows that private car related modes (carpool or drive
alone) were less likely to be used at destinations with more households with zero auto
ownership. Entertainment employment density also showed negative impacts on the use of
drive alone or carpool modes. Destinations with higher proportional accessibility also showed
strong positive impacts on the use of micromobility modes, also drive alone and carpool use.
Destinations with high regional diversity also encouraged the use of TNC or taxi services for
egress purposes. Figure 22 presents the impacts of the land-use variables. Accessibility and
diversity measures showed strong impacts on the egress mode choice behavior.

Table 11 Model Results for Land-Use Patterns
Parameter Wheelchair | Micro-mobility | Carpool | TNC or Taxi | Drove Alone
Intercept -13.4066 -4.7544 -3.6420 | -6.7790 -5.1356
(7.9537) (0.3286) (0.3349) | (0.7589) (0.6185)
Number of households in Destination -0.0016 -0.0042
CBG that own zero automobiles (0.0007) (0.0014)
Gross entertainment (5-tier) -0.0880 -0.2173
employment density (jobs/acre) on (0.0427) (0.1125)
unprotected land of destination
Proportional Accessibility to Regional 3.9741 3.8362 4.8458
Destinations (1.3076) (1.1854) (1.2974)
Regional Diversity of destination 1.4658 0.7102
(0.4872) (0.3621)

Impacts of Land-Use Patterns on Egresss Mode Choice

Regional Diversity of destination .

Proportional Accessibility to Regional Destinations _

Gross entertainment (5-tier) employment density
(jobs/acre) on unprotected land of destination

Number of households in Destination CBG that own zero
automobiles

-1 1 3 5 7 9 11 13

H Drove Alone TNC or Taxi Carpool Micromobility B Wheelchair

Figure 22 Relative Impacts of Land-Use Patterns
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1.5 CONCLUSION

This report presents a study aiming to investigate the potential market of TNCs to serve as the
first/last mile connection for transit services. To achieve this goal, this study investigated the
influential factors that affect transit users' choices of access and egress modes, including TNC or
taxi, drive alone (PNR), carpool (KNR, carpool or shuttle), micromobility modes (bike-sharing,
scooters, etc.), and others. Transit on-board survey data collected in Spring 2017 for the
Orlando metropolitan area were used for this analysis. The survey covered bus services
provided by LYNX. The survey collected detailed trip information for all segments of the transit
trips, including access and egress links. User demographics and household information were
also recorded in the survey. This data provided the opportunity to look into the characteristics
of transit trips and investigate the influential factors to users’ mode choice behavior for first
and last-mile connections.

In addition to the transit on-board survey data, various other data were also compiled and
integrated into the GIS database to facilitate the analysis. These data include GTFS data for
LYNX transit networks, street data, and the Smart Location Database (SLD) provided by EPA.
The SLD data provided a comprehensive set of land use attributes at census block group level,
including population and employment information, density measures, diversity variables, land
use design variables, transit-related attributes, and accessibility measures. These data provided
the opportunity to investigate how land use characteristics may contribute to users' choice for
access and egress modes, beyond the personal and household attributes.

Separate multinomial logit models (MNL) were developed to investigate the mode choice for
access and egress links, respectively. The models revealed interesting insights into transit users’
choice behavior for first and last-mile connections. Various personal characteristics, trip
attributes, and land use variables showed significant impacts. Particularly, trips going to
airports or universities/colleges had much higher probabilities of using TNC for access and
egress purposes. On the other hand, sports events and medical visits were less likely to be
connected through TNC services. Visitors and evening trips were also less likely to start with
TNCs. A longer distance between the origin and the transit service showed positive impacts on
the use of TNC services. Higher household income also showed a positive influence on TNC
usage.

In view of land use characteristics, higher employment and household entropy and higher
diversity at the origin showed positive impacts on the use of micromobility and walking, and
reduced the probability of using motorized modes, including TNCs, for access purpose. On the
destination side, higher diversity seemed to encourage the use of TNCs and drive alone modes
for egress purposes.

This study provides useful insights into the factors that may influence transit users' choice of
modes for access and egress purposes. It may help transit agencies and planners in



Discovering Potential Market for the Integration of
Public Transportation and Emerging Shared-Mobility Services

understanding the potential market for using TNCs as first/last mile connections for transit
services.
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2.0 TASK 2: ANALYSIS FOR SUPPLY MARKET

2.1 INTRODUCTION

In recent years, ridesharing services, such as Uber, Lyft, Avego (Carma), SideCar, DiDi (in China),
etc., has quickly spread in popularity (Xu et al., 2015) in different cities and countries. It has an
immediate impact on public transit. Some studies show that shared-mobility service is a
complement to public transit as it promotes the ridership of transits and helps reduce traffic
congestion (Feigon and Murphy, 2016). Other studies demonstrated that ridesharing mode is
undermining public transportation and becoming a major contributor to snarled traffic
congestion and carbon emissions (Hill, 2018). These mixed findings indicate that ridesharing
and public transit present complicated competitive/complementary relationships over a
spatiotemporal space and none of them can fully satisfy the modality requests individually.
Forming hybrid urban public transport services such as hybrid transit system (Koffman, 2004) or
cooperating with transit and emerging on-demand services (i.e., microtransit or ridesharing
services) (Boarnet et al., 2017) is well accepted, both of which seek to inject or integrate the
flexibility into the public transit system. Over decades, many models (Aldaihani et al., 2004; Fu,
2002; Quadrifoglio and Li, 2009) have been developed to implement and operate hybrid transit
systems in different ways, but few succeeded. The main challenge is the traffic demand
variation in different levels (Velaga et al., 2012). To effectively operate a hybrid system, we
need to not only penetrate the gradual evolvement of transit demand to properly refine the
fixed transit routes but also predict the ad hoc demand online to timely implement flexible
services. In addition, the prediction and accommodation of these two types of demands should
be coordinated rather than be independently conducted.

However, the majority of current studies usually predict the demand for one of them
individually. For example, using the transit ridership data, demographic survey combined with
land use, many studies estimated transit demand for planning the inflexible transit routes in
long term (Boyle, 2006; Hashemian, 2002; Huang, 1996; Nazem et al., 2011; Roberts, 1985;
Sung et al., 2014). These traditional data and analysis approaches are either too expensive or
not sensitive enough to capture gradual and mild transit demand changes over weeks or
months resulting from many factors, such as people’s activity and seasonal requirements.
Accordingly, current transit routes usually will not change over months or years, and they do
not coordinate well with the flexible routes provided by on-demand services. Other efforts
predicted the dynamic ad hoc demand through ridesharing data (Faghih et al., 2019; Liu et al.,
2019; Xu et al., 2017; Zhang et al., 2019), i.e., Uber and taxi, only for improving ridesharing
service rather than transit routes. Therefore, the state-of-the-art indicates that transit and
ridesharing service data are often individually analyzed with separate objectives for the
respective modes. Their prediction on demand provides limited help to coordinate the flexible
and inflexible routes in a hybrid urban public transport service system. From another point of
view, public transit and ridesharing services together make up a hybrid system. The demand
and service gaps of such hybrid system can be sensed by their service data. Therefore, in order
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to well coordinate with their services, we should put transit and ridesharing service data
together for the spatiotemporal demand analysis.

In view of the above issues, this study seeks to investigate the data analysis approaches, which
combine unite transit and ridesharing service data together to explore the service gaps for
setting new transit stations and routes as well as integrating ridesharing and microtransit
routes. The objective is to promote the cooperation between public transit and on-demand
services. To do that, this study postulates that current competitive/complementary
relationships between traditional transit system and ridesharing service make ridesharing
vehicles function as the probes to detect the deficiency of the flexibility and coverage in the
existing transit network and its services. The findings can provide clues to refine the backbone
transit network and promote cooperation between transit and on-demand services.

A majority of the existing studies used the ridership data (including the pickup and drop-off
data of ridesharing service or loading and alighting data of transit service) for the demand
prediction. Few studies investigated the trip data collected from both ridesharing and transit
sides, which may reflect the deficiency of the flexibility and coverage in existing transit routes
from a different perspective. For example, the spatiotemporal areas dominated by ridesharing
trips (services) indicate potential deficient transit services, while other areas evenly covered by
both transit and ridesharing trips indicate diverse traffic demand for hybrid service modes.
Thus, putting the trip data from both modes together will give us a new angle to discover the
potential supply-demand market for integrating these two modes in a hybrid service system.
However, it is not trivial to implement the aforementioned data analysis. We introduce the
research challenges along with our contributions to the solution approach development as
follows.

First, the transit trips have fixed routes and schedules, while the ridesharing services randomly
distribute over a city during different time slots over a day. The two sets of trip data together
ramblingly scatter in a spatiotemporal space and they are non-additive, which make many
guantitative approaches have no way to start directly. To address this difficulty, we first
developed a new data presentation approach, which considers each trip as a 3D curve and then
meshed their spatiotemporal services with an optimal 3D grid involving a number of uniform 3D
cubes. This optimal 3D discretization enables us to zoom in and study the service competition
between these two modes in each cube. However, the results only provide information
fragments rather than the service gaps that we are interested in. This problem motivates our
study to further aggregate the cube information fragments to ridesharing/transit swarms — the
areas formed by the connected cubes which are dominated by one service — in each time slice.
Built upon that, we are able to explore the corresponding spatial service gaps and provide
future route planning suggestions. Next, by combining the ridesharing pick-up, drop-off data
and transit station data, we propose an innovative approach — identifying “sandwich” patterns
— to locate the potential first/last mile zones for integrating microtransit services. Last, we
recognize that the insights obtained at each time slice can only present spatial demand
variation but not temporal demand dynamics. Consequently, it will not help planning on-
demand services that require the understanding of the temporal variation. This study then piles



Discovering Potential Market for the Integration of
Public Transportation and Emerging Shared-Mobility Services

the information slices in the temporal dimension as a time series data and feeds them into a
deep learning network to predict future demand patterns.

The effectiveness of this data analysis approach is validated by a case study built upon the field
data collected in the second ring region of Chengdu, China. Specifically, we find nine first/last
mile zones. Combining with land-use data, we noticed that they are either big commercial or
residential areas with high population density. Among them, some areas locate around metro
lines, thus microtransit service is potentially needed to cover first/last mile demand. Some
areas are away from the metro line but with low transit service and they potentially require
additional transit service coverage. Thus, analyzing these trip data provides constructive
guidance to improve the current transit service by considering the ridesharing services.

We summarize the main contributions of this study as follows: (i) We developed a new 3D
presentation approach to present the trip data collected with different collection rates and
coverage; (ii) We developed an innovative data analysis approach, which spatially aggregates
information fragments and temporally piles the spatial information to uncover the potential
transit service gaps hidden in trip data involving both transit and ridesharing modes; (iii) We
found two interesting patterns, service swarms and “sandwich” patterns, which respectively
point out underlying transit demand and first/last mile zones suitable for potential microtransit
service; (iv) Using deep learning method, we predicted the time-vary transit first/last mile zones
which helps the operation of microtransit service; and (v) We analyzed a set of field data
collected from Chengdu city in China and validated the effectiveness of our approaches. Our
analysis of ridesharing trip data in this study can be extended to other mobility modes, such as
bike-sharing and private vehicle trip data, to provide a thorough understanding of transit
service gaps. These contributions together benefit the development and operations of hybrid
urban public transport systems.

2.1.1 Objective

This task assesses the spatiotemporal service gaps of transit services. The objective is to
investigate when and where are the supply gap/hubs to either integrate shared mobility and
public transit services or properly implement hybrid transit systems.

2.1.2 Scope

This task focuses on data analysis of transit trip data and ridesharing trajectory data in the
second ring region of Chengdu, China in 2016.

2.2 LITERATURE REVIEW

This study focuses on developing innovative approaches to analyze trip data collected from
both transit and ridesharing services, aiming to discover the mobility service gaps and their
variation in an urban area. The findings of this study will help promote the cooperation of
transit system and existing on-demand services for improving the service level in an urban
public transport system. This research is closely related to the demand prediction for transit
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and ridesharing. Our review will introduce these closely related studies in literature,
differentiate this effort from existing studies and further highlight our contributions.

We first discuss the state-of-the-art of transit demand prediction. According to Boyle (2006),
existing studies mainly applied ridership (Fang et al., 2018; Hashemian, 2002; Huang, 1996; Jun
et al.,, 2015; Nazem et al., 2011; Nourbakhsh and Ouyang, 2012; Roberts, 1985; Sung et al.,
2014) and O-D survey data (Chatterjee and Venigalla, 2004) to predict transit demand. For
example, (Nazem et al., 2011) analyzed the travel patterns of different demographic classes to
understand the relationship between transit ridership and demographics. (Sung et al., 2014)
employed spatial regression analysis to investigate the impact of land use on the rail transit
ridership in the city of Seoul. (Jun et al., 2015) applied a multinomial logit model to analyze how
land use and demographic characteristics affect transit ridership. In recent years, the ridership
data collected by the Automated Fare Collection (AFC) system is used to capture the variation
of the transit demand, especially for railway system (Fang et al., 2018). For example, based on
AFC data, (Nourbakhsh and Ouyang, 2012) developed the state-space model to predict the real-
time subway demand, considering the impact of special events. In the meantime, extensive
studies analyzed the ridership data collected from ridesharing services, but mainly for
predicting the ridesharing demand. For example, based on Uber pick-up data, (Faghih et al.,
2019) applied the LASSO spatial-temporal autoregressive model to predict the Uber demand in
Manhattan. (Xu et al., 2017) fed the taxi pick-up and drop-off data in New York City into a long
short-term memory (LSTM) neural network to forecast the future taxi requests. (Zhou et al.,
2018) employed the convolutional LSTM (ConvLSTM) to capture the spatiotemporal
relationship of both taxi and bike-sharing demand data in New York for a short-term demand
prediction. (Zhang et al., 2019) developed an end-to-end multi-task learning temporal
convolutional neural network to predict the short-term ridesharing demand and compared its
performance with the state-of-the-art deep learning approaches.

This brief review indicates several research gaps that this study tries to make up. First of all, the
majority of existing studies predicted/estimated the passenger demand for transit or
ridesharing services through their own ridership data (i.e., transit smart card data or ridesharing
pick/drop data) combined with the demographic and land-use features. However, few studies,
like this research, investigated the service trip data collected from both transit and ridesharing.
This study noticed that these trips can reflect the collective and dynamic competition between
these two modes in a spatiotemporal space. Consequently, analyzing their trip data may offer
unique insights for integrating these two types of mobility services in a local network. To the
best of our knowledge, this is the first attempt to investigate the service deficiencies of an
existing transit system through analyzing its competitors’ services such as ridesharing trip data.
On the other hand, the trip data are non-additive curves spanning in a local network during a
period. Existing approaches, such as various choice models and regression analysis, which have
been successfully used to analyze ridership, land use and demographic data, cannot be directly
applied to study trip data. It calls for new approaches to conduct the data analysis. The above
points highlight the novelty and unique methodology contribution of this study.
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From the application view, this study will significantly contribute to the development of the
hybrid transit system or the integration of transit system with emerging on-demand services.
Even though the concept of the hybrid system has been proposed for decades, only a small
percentage of transit agencies (Potts et al., 2010) adopted it. The uncertainty of passenger
demand (Velaga et al., 2012) plays one of the critical challenges. For example, (Qiu et al., 2014)
indicated that the uncertainty of demand leads to inappropriate slack time and makes flex-
route service fragile and inefficient. Therefore, to operate a hybrid transit system well, we need
new research approaches to better understand the demand varying in different levels in a
hybrid mobility service environment. Few studies in the literature investigate this research
need. This study seeks to partially fill in this research gap, too. Below is the unique
methodology developed by our team of researchers, which we believe contributes significantly
to the state-of-the-art.

2.3 METHODOLOGY

This study is devoted to the development of innovative approaches to analyze trip data
collected from transit and ridesharing services to investigate the flexibility and coverage gaps of
the current transit system. These findings will help implement new fixed routes, stations as well
as microtransit to promote the implementation of a hybrid transit system. To do that, we
consider ridesharing trips as the detectors to reveal the potential mobility demand for the
flexible and inflexible transit routes and also explore their evolvements over different temporal
and spatial horizons. Along with the above thought, this study mainly considers the trip data
defined as follows. We consider IV number of ridesharing vehicles and B number of bus/metro
services. Their trajectories are respectively updated at discrete time stamps n € {0,1, ..., N}
according to ridesharing vehicles GPS updating frequency, and at m € {0,1, ..., M}
corresponding to the bus arrival time at the stations. Accordingly, the trip of the ridesharing

vehicle v is denoted as Z; = {Z,f,n(x, y),n € {0,1, ...,N}},Vv €V, where z3 ,(x,y),
abbreviated as z,,;_(x,y), is the coordinates of vehicle v at the nth time stamp (time t,);
similarly, the trip of bus b is denoted as Z] = {Zg'm(x, y),m € {0,1, ...,M}},Vb € U, where

ng(x, y) is the coordinates of bus b at the time mth time stamp. We mark t, as the departure
time at start station and t,,,, m € {1, ..., M} is the arrival time at following stations along the
transit line.

Built upon the above data, this study will develop data analysis approaches, which integrate
spatiotemporal statistical data analysis, machine learning and optimization approaches, to
provide the following capabilities. We will first discover when and where transit and ridesharing
compete or complement on the local transportation network. Based on this knowledge, we will
reveal transit mobility service deficiencies in flexibility and coverage as well as their temporal
and spatial variation pattern so that we can provide valuable planning suggestions to operate a
hybrid transit system. Our data analysis approaches include three key components: developing
optimal discrete 3D presentation, analyzing ridesharing service swarms to discover spatial
transit service gaps and then predicting the dynamic patterns of the service gaps.
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2.3.1 3D presentation and Optimal Discretization

As we mentioned above, this study involves ridesharing GPS trajectory data and bus trip data.
These two sets of data ramblingly scatter in the traffic network and their coverage change over
time, i.e., each trip starts and ends at different time and locations by going through different
roads. To uncover the service pattern involved in the data, we need a good presentation to
support the analysis. Considering the spatiotemporal dynamics of the trip data, this study puts
all trips in a 3D space spanned by 2D (x-y) spatial coordinates and time (t) dimension. This 3D
space represents the entire service space. Accordingly, each individual trip is presented by a 3D
route in the space. See Figure 23 for an example.

Furthermore, we noticed that the 3D routes intersect and then diverge at different
spatiotemporal points. Some areas present very dense trips going through by both bus and
ridesharing modes, where they compete for demand, but others sparsely visited by one of
them, where they complement. Most importantly, these trips data are not directly addable. To
systematically analyze these competitive and complementary relationships between these two
traffic service modes, this study discretizes the 3D service space into K X I number of uniform
cubes (see Figure 23, where K is the number of the pixels spatial area and | is the number of
time interval in dimension. And then, we examine their service relationship in each cube first
by observing the number of bus or/and ridesharing services occurring in each cube. Built upon
the analysis in each cube, we propose statistical and machine learning methods to discover the
complementary or competitive pattern over the entire 3D space. To do that, it is noticed that
the determination of cube dimension (i.e., time interval and the pixel size in spatial dimension)
is therefore very critical to the analysis. Different cube sizes may lead individual cubes to
present different information, which provides a different interpretation for the competition
relationship. This study next discusses the significance of this factor in detail and then presents
our approach to decide the optimal length of the time interval and pixel size.

2.3.1.1 Optimal Time Interval

The data analysis based upon the 3D presentation first discretizes (slices) the study horizon by a
fixed time interval 1. This section investigates how the length of the time interval of each cube
will affect the statistical analysis and then explores the optimal time interval 7. Please note
that with a given time interval, we locate the position of a ridesharing vehicle by its averaged
coordinates during each time interval. This process will compromise the accuracy of the
location information. It also may lead to miscounting of the number of ridesharing services in
each cube if the cube size is not proper. For example, the actual trajectory of a ridesharing
vehicle may go across multiple cubes during an interval, and then this ridesharing service
should be counted in each of these cubes. However, by taking the average coordinates, it can
only fall in one cube but not other cubes. If the time interval is too wide, it may cause
significant miscounting. On the other hand, if the time interval is too small, it will lead to a large
number of cubes and makes the training process expensive. Therefore, the selection of T needs
to balance the computation load and the information accuracy. To address this dilemma, we
develop the optimization model in (4) -(7), which explores the optimal time interval with the
objective to minimize the information loss and the dataset size, subject to feasible range of the
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value 7. Note that transit service data is not involved in this optimization model, because we
analyze the arrival time of transit vehicle at each stop rather than transit trajectory, the
accuracy of transit service location information is not influenced by improper time discretizing.

Figure 23 3D presentation

More exactly, this study uses the sample variances (the first item in (4)) to measure the loss of
the location information and also puts the penalty on the number of the cubes. Note that this
optimization model is hard to be solved because of the presence of the decision variable

7 underneath the summation symbol. However, it only involves one variable. In practice, we
can find a lower and upper bound for T so that the searching space is reasonably limited. For
example, in our dataset, the DiDi vehicle trajectory data has updating frequency of 2~4 seconds
which makes T = 4; the average DiDi single trip service time provides an upper bound 7.
Therefore, we can quickly search the local optimal solution of T by using line search
approaches (Dechter and Pearl, 1985) in a narrow feasible region [z, T].
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where 7, the length of the time interval, is the single decision variable and z,,,(x, y) is the input
data, which represents the location coordinates of the v-th vehicle at time t; i € I is the index
for time interval; V, represents the set of ridesharing vehicles at time t. U’ represents the set of
vehicles during i-th interval; Z},; c Z; is the set of coordinate records of v*" ridesharing
vehicle during the time interval [it, (i + 1)7]; specifically, Z%,; = {z,,,(x,y)|it <t < (i + D)7};
a and S are the predefined weights normalized to make the two terms comparable in the
objective function in the magnitude. An optimal solution of T enables the data analysis
proposed in this study to hold both desired information accuracy and acceptable computation
load.

2.3.1.2 Optimal Pixel Size

This study next determines the pixel size of the cubes in the spatial dimension. In addition to
the time interval 7, the size of the pixel will also affect the number of the cubes as well as the
counting of the ridesharing/transit services occurring in each cube. Thus, it will influence the
computation load as well as interpretation power of the data analysis. See Figure 24 for an
example. We consider the average speed of the traffic on a road is v, and the speed upper limit
is v. With the given time interval width 7, if the size of the pixel is too small, such as the length
of the edge | < tv, in Figure 24 (a), it will very likely lead to many empty pixels since the
majority of vehicles can run across a pixel during a time interval . On the other hand, if the size
of the pixel is too large, such as the length of the edge | > v in Figure 24 (b), it will lead to
overcount since an individual vehicle will have more than one record in the pixel.

() (b)
houd NN Rl
t=20 t=r1 t=20 t=r1 t =271
[ l
Figure 24 Examples of improper pixel size. (a) [ < tv,, (b) when [ >

The example above shows that a pixel with the length within [v, T, vT] will facility the analysis
better. An improper discretization will lead to many empty cubes or overcount. It will
notprovide valuable insights and will affect the statistical analysis significantly. Therefore, we
seek to explore the optimal pixel size so that they can clearly present either complementary or
competitive relationships between traffic modes. To do that we first formally define a
complementary or competitive pixel in Definition 1 and 2 through the ridesharing service ratio
defined in Equation (8) below.

Ng;
R={ng}mei =Ny,
~1 N =0

Nk'i>0,keK,ieI, (8)
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where N,f‘l- and N, ; respectively denote the number of ridesharing trips and total trips going
through pixel k during the i-th time interval. Equation (8) indicates that 1, ; € [0,1] for N,.; > 0
and we mark 7, ; = —1 if it is an empty pixel (i.e., no trips present in the pixel).

Definition 1 - Complementary Pixel: A pixel presents a complementary relationship between
the ridesharing and transit services, if and only if its ridesharing service ratio satisfies 1y ; €

[O,Q] U 1lkeK,i€l, wherez and 7 are given parametersand n =1 — n.

Definition 2 - Competitive Pixel: A pixel presents a competitive relationship between the
ridesharing and transit services if and only if its ridesharing service ratio satisfies 1y, ; €

[E,ﬁ],k € K,i € I, where E,,H are given parameters, u = 1 — K.

Definition 3 - Noise Pixel: A pixel cannot present a clear competitive relationship between the
ridesharing and transit services if its ridesharing service ratio satisfies 1y ; € [n,,u] U i, 7] (i.e.,

unidentifiable pixel presenting neither complementary nor competitive relationship) or 13, ; =
—1 (empty pixel), k €EK,i€l, n=1—nand u=1— u.

According to Definitions 1 and 2, a complementary pixel indicates that either the transit or the
ridesharing dominates the service going through the pixel. Potentially, a group of such
complementary pixels shows one of the two services is not sufficient. This information is very
valuable to facilitate our data analysis later. However, a competitive pixel shows that neither
the bus nor the ridesharing presents apparent merits to the trips going through the pixel.
Accordingly, we consider those pixels presenting either a complementary or competitive
relationship as informative pixels in contrast to the noise pixels defined in Definition 3. The
ratios of informative pixels and noise pixels are affected by the schemes of the 3D
discretization. We next discuss our ideas to search for the optimal discretization scheme.

First of all, our approaches are more interested in those informative pixels. The discretization
therefore seeks to generate sufficient informative pixels. Accordingly, an optimization model
(9)-(12) is developed with the objective to find the optimal number of pixels (k*), so does the
size, for maximizing the total number of the informative pixels with a given time interval 7 (see
the objective function).

PzI
1
m}ng(pAK,i +qA,;) (9)
i=0
Subject to,
1 — (10)
AK,i = E z uk,i (K), Vi el

k=1
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K
A, = zvki ), Vi€l 11

k=
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=

K<K<K (12)

where k is the decision variable, representing the total number of the pixels, each with a square
shape; uy ; and v,; are auxiliary binary variables, u,; = 1ifr,; € [0,n] U [1,1],and 0
otherwise; vy ; = 1ifry; € [, 1], and 0 otherwise. A, ; and A, ; are the proportion of the
complementary/competitive pixels over the study region; p and q are predefined weights
normalized to make the proportion of the two kinds of pixels comparable. Note that for a given
study area with size S, the more pixels present, the smaller the pixel size is. As a proper pixel
length is within [v, T, vT], the total number of pixels, k, is also bounded by [k, k], where k =

[S/@D)]* and & = [S/(vaT)]*.

Next, givenn =1 — nand u = 1 — u, we notice that two of the four parameters (e.g., 4 and
n) will significantly affect the solution of the discretization since they affect the value of 1 ;

used in Definitions 1-3 so do the values of 4, ; and fTK’i in the optimization model. More
exactly, this study names the interval u — 71 as an unidentifiable interval (Ul). A narrow Ul
loosens the criteria to certify competitive or complementary pixels according to Definitions 1
and 2. Accordingly, it tends to produce a discretization solution with a few pixels (i.e., a small
value of k*) each with a large size, which may maximize the size/number of the informative
pixels but result in a low resolution, e.g., a pixel may cover some areas not presenting
consistent lane-use features. On the other hand, a wide Ul tightens the criteria and leads to a
discretization solution with plenty of pixels (i.e., a large value of k™) each with a small pixel size,
which may lead to more noise pixels as the cost. The determination of the parameters is highly
data orientated. Thus, this study will perform a sensitivity analysis for the Ul in our case study.
Combining with the land-use analysis, we suggest proper values for the parameters ,7, u and

W in the case study.

The optimization model P, is nonlinear and nonconvex, but with a single integer decision
variable k within [k, k]. This study thus explores the optimal solution by heuristic approaches
such as the best first search (BFS) algorithm (Dechter and Pearl, 1985), which is one of the
efficient sequential search algorithms in discrete optimization. For completeness, we present
the main idea of this algorithm as follows. The BFS maintains a list named OPEN, which is
placed with nodes (possible solutions) to be expanded. Initially, the list of OPEN includes a set
of integer solutions within [k, k]. Then, the solutions are evaluated through the objective
function (9). The worst solution is removed from the list and the best solution is expanded to
include its neighbors in the OPEN list as successors. The heuristic evaluation process is repeated
until no more successors are found. The best solution remains in the OPEN list is the optimal
solution.
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2.3.2 Searching Ridesharing Swarm

The 3D discretization enables us to capture the competitive/complementary relationship
between two modes within each individual cube. We can present this result by heatmap, in
which the color of each cube represents its service rate (see the example shown in Figure 25).
However, they only provide us the information debris rather than insightful information for the
service gaps. This motivates us to aggregate the information that individual cubes provide to
explore the converged insights. Our approach includes two steps. We first slice the 3D space by
the time interval T* and then explore the service distribution by building the set of heatmaps

h = {h;, i € I}, in which the heat in each pixel k of heatmap h; is measured by its service rate
17, defined in Equation (8). A heatmap h; exhibits the competition relationships within a time
interval [it*, (i + 1)7*] over the study region. Next, we project all heatmaps to the spatial
region and aggregate the heat in each corresponding pixel k by averaging the r;;, over all

heatmap h; € h,i.e.,, R, = %Zirik. Thus, we obtain a new aggregated heatmap H over spatial

region, in which each pixel holds the heat R;. Through the aggregated heatmap H, this study
seeks to conduct two specific analyses to discover the competitive or complementary patterns
over a region and understand the transit service gaps.

Figure 25 Searching RS zones (a) RS zones in heatmap H; (b) and (c) Potential
transit hub and routes integrating ridesharing and transit services.

First, we demonstrate the capability of the heatmap H to help refine the existing transit
network by improving the coverage and/or flexibility. Specifically, we mark the regions, where
ridesharing services are dominant in the heatmap H, e.g., R, = 0.9 as a ridesharing swarm (RS)
zone. It means that over the aggregated period, most of the ridesharing service trips, no matter
when and where their ODs are, have passed the RS zones (Figure 25 (a)). These RS regions
indicate the deficiency of the coverage and/or flexibility of transit services since they attract
significant ridesharing demand but have limited transit service. Consequently, if the demand is
consistent, which is implied by consistent number of ridesharing trips between RS zones, we
adopt the first scheme to refine the current transit backbone network which is building new
stations in each RS zones and then adding new routes connecting those RS zones (Figure 25(b)).
This scheme improves the network coverage, and it will potentially attract more transit
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passenger demand from ridesharing. On the other hand, we also observe the case in which the
demand going through an RS zone is highly dynamic. If this RS zone covers a large area
surrounded by enough transit services, it indicates on-demand service requests. In this case, we
propose Scheme 2: implementing microtransit services within the RS zones to accommodate
the ad hoc demand around the RS zones and connect these demands to nearby transit services.
Please see an illustration in Figure 25(c) where the microtransit services have flexible routes
and schedules. Combining with existing ridesharing services, Scheme 2 will potentially improve
transit usage. Both Schemes 1 and 2 are promising solutions to catch passenger demand
around RS zones and improve the transit service. Moreover, the inclusion of these RS zones to
the existing transit network generates more opportunities to improve transit ridership
near/within RS zones through various modes, i.e., ridesharing, and intermodal trips (see an
example in Figure 25(b), where the dashed arrow indicates an intermodal trips in which the
ridesharing feeds transit service).

2.3.3 Searching First and Last Mile (FLM) gap

Suffering from the limited coverage and flexibility in the current transit system, bus passengers
often meet the difficulty of the first and last mile (FLM) gap and switch to ridesharing or private
auto modes. Emerging microtransit provides a promising solution to make up this deficiency by
providing on-demand service for a small group of passengers. However, it is very hard to find
the first and last mile gaps due to the lack of intermodal trip or relevant survey data. This study
thus developed a new approach to infer the first and last mile gaps through heatmap analysis.
First, given that the FLM demand usually varies from hour to hour, our analysis is built upon a

Figure 26 Schematic representation of first/last mile area pattern.

set of hourly aggregated heatmaps h= {flw, w € W}, each heatmap Ew is aggregated from a
set of heatmaps h; € h over a time window of one hour. Second, we noticed that those
“sandwich” patterns, in which a transit dominant zone is immediately connected by multiple
ridesharing swarm zones (see Figure 26, i.e., A;BA,), have a great potential to present FLM
zones. To interpret this thought, we show the correlation between the FLM zones and the
“sandwich” patterns as follows.



Discovering Potential Market for the Integration of
Public Transportation and Emerging Shared-Mobility Services

First of all, we consider a large area, such as a big shopping center or residential area. If there
are transit stops nearby this area, the first/last mile problem happens when the distance
between the transit stops and origin/destination is beyond the walking distance. Then many
ridesharing trips will show up in this area. Next, we present the correlation between the FLM
zones and the “sandwich” patterns on the heatmaps. Take Figure 26 for example, the zones
with white color (denoated as A zones) represent ridesharing swarm zones. The zones with red
color (denoated as B zones) are transit dominant zones (R, < 0.5). Both A; and A, have low
transit coverage but have transit stations nearby due to their connection to B zone. In this case,
the FLM problem may occur when there is a long distance between origin/destination in A,
and/or A, and nearest transit station in B. Specifically, if many demand travel between A, to A,
by ridersharing rather than using nearby transit line in B, this implies that the passgeners may
suffer from first and last mile diffculty. Or, the demand can take intermodal trip (ridesharing
and bus) to complete the trip between A; and A,. In either case, A; and A, are the potential
areas where ridesharing trips or microtransit can help overcome the first and last mile problem.
The above analysis indicates that if we also noticed extensive ridesharing trips occuring
between the zones within these patterns suchas A; S B; A, S B,A; S A,, itis very likely that
some RS zones involved in the “sandwich” patterns, i.e. A;BA,, are candidate FLM zones. These
ridesharing orders are considered as the FLM-prone orders. The more FLM-prone orders
observed, the higher possibility the RS zones within the pattern are the FLM zones.

Motivated by the above finding, we incorporate the ridesharing OD and bus station data into
our analysis of the averaged heatmap flw € h to search the potential FLM zones. The main idea
is to first discover the “sandwich” patterns where two ridesharing swarm zones are sandwiched
by a transit dominated zone on the heatmap ﬁw. And then, we identify the FLM candidate
zones involved in the “sandwich” patterns by referring to the ridesharing OD information. More
exactly, we filter out zones that have FLM-prone orders, suchas A; S B; A, S B,A; S A,
among “sandwich” patterns.

The zone that has more FLM-prone orders has a greater chance to be FLM zone. Therefore, for
any pixel k within the RS zones of “sandwich” pattern, we consider p, as the probability that
pixel k is a FLM zone. And the probability py, is calculated by the number of FLM orders in pixel
k divided by total number of FLM orders throughout the heat map. In this way, we are able to
create the time-vary FLM order probability heatmaps, i = {f,,, w € W}, which is the input as
second channel data in the ConvLSTM model for prediction )(see the paragraph below for
details). The proposed approach identifies the potential FLM zones/demand spatiotemporally,
which allows transit agencies to efficiently incorporate flexibility in the services. The identified
FLM zones are further validated through the bus station density analysis and land use data in
the validation part of case study.

2.3.4. Learning Spatiotemporal Service Gaps

The above section manages to discover the consistent transit coverage and flexibility gaps.
Relying on those observations, we provide suggestions to refine the existing transit network
such as adding new bus stations, routes, or microtransit services. However, those findings are
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obtained from the aggregated heatmaps along a given timeframe. They are static and provide
limited help for a hybrid transit system to flexibly respond to passenger demand variation over
different timeframes. To broadly incorporate the flexibility into a transit system, it is important
to learn the demand dynamics. This study is thus inspired to develop the prediction model in
this section.

This study uses an existing two-channel ConvLSTM learning model using the heatmap data, i.e.
h; € hand ﬁw € has inputs to predict the transit service gaps, including both ridesharing
swarms and FLM zones. The following is our justification for selecting this model. One of the
key characteristics of these data is the high spatiotemporal correlation. For example, some
areas on heatmap h; may share common features, such as areas near the metro hub which
attract significant mobility needs including ridesharing as well as FLM demand. Moreover, the
heatmaps, such as h and h, are sets of time series data. It’s important to capture this
spatiotemporal correlation in the prediction model to improve the accuracy. Recent advances
in deep learning have enabled researchers to model the complex nonlinear relationships. More
exactly, a convolutional neural network (CNN) has been used to capture complex spatial
correlation (Zhang et al., 2016) and Long Short-Term Memory network (LSTM) has exhibited
outstanding performance on time series data prediction. The ConvLSTM model, a combination
of CNN and LSTM (Xingjian et al., 2015), has demonstrated the satisfied performance to capture
the spatiotemporal correlation in the data for weather precipitation forecast prediction. Given
the spatiotemporal characteristics of heatmap data, this study, therefore, uses the ConvLSTM
model to predict the dynamics of transit service gaps.

For completeness, we briefly introduce the structure of the ConvLSTM as outlined through
equation (13). The model learns sequential (temporal) correlations through a memory cell ;. It
has three gates (forget f;, input i;, output o, gates) and two non-gate tanh units. The gates of
ConvLSTM are able to manipulate the outputs of tanh units and value on the memory cell line,
which learns temporal correlations. h; is the output of memory cell at interval t, which is
controlled by the output gate o;. The convolution operator between weights and input data
characterizes the spatial correlation.

ip= oWy Xy +Upxhe_y + by)

ge = tanh (W, * X, + Uy = hy_y + by)

fe = o(Ws * X, + Us * hy_y + by) (13)
o= oW, * X¢ + Uy * hy_q + by)

e = froCo1titoge
h; = tanh (¢;) © o;

where b’s are biases for the respective gate. W’s and U’s are forward and recurrent weights,
respectively. They are all learnable parameters. “o” denotes element-wise multiplication, and
“x"” denotes the convolution operator.
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Moreover, recall that the FLM heatmap, h,,, is generated upon the analysis of OD information
and heatmaps h. Therefore, the heatmaps data, h and h, are correlated with each other. This
motivates us to adopt a two-channel ConvLSTM model, with first channel as heatmap data

h,, € h and second channel as FLM heatmap data, i1, € h. This two-channel build-up maintains
the correlations between different channel data, which is able to accurately and simultaneously
predict the heatmaps for analyzing the ridesharing swarms and FLM zones. Specifically, the
input data is a sequence of S X S, two-channel images, or a series of tensors, X,eR5*5*2, We
validate the performance of the two-channel ConvLSTM learning model by the case study
below.

2.4 CASE STUDY AND RESULTS

This case study validates the capability of the proposed analysis approach based on the real
field data. More exactly, we will examine the discretization approach as well as its capability in
finding ridesharing swarms, and inferring and prediction of passenger demands in different
levels of variations.

The case study is built upon the testbed consisting of the transit and ridesharing services data in
the city of Chengdu. Chengdu is a major city in China and has a population of 7.8 million. As
shown in Figure 27, the study area is in the second ring region of the city and covers a square
region with 5 miles edge length. The ridesharing service data is provided by DiDiChuxing Gaia
open dataset (https://gaia.didichuxing.com). It involves about 0.2 million trips made by DiDi
ridesharing services per day from November 1 to November 30, 2016. The profile of the data
includes ridesharing vehicle trajectory GPS data, which is updated 2 — 4 seconds, and
ridesharing order request information, which records pick-up and drop-off timestamps and
locations. The public transit data is collected by the website of Moovit app
(https://moovitapp.com/). It covers all bus lines and subway lines information in Chengdu city.
For each line, the profile of the data includes station names, station locations, operation times
and transit vehicles’ arrival time at each station. Please note that the real time trajectory data
of transit vehicles is unavailable. This study will use the schedule and station location data to
format each trip. The operating time of transit services varies from line to line, but most of
them start at 6 AM and end at 8 PM to 10 PM. There are a total 1226 transit stations
distributed within the study area and, in total, 246 transit lines passing through the study area.
As the study area is 5x5 mi?, there are about 7 transit stations per mile on average. The case
study is run on a DELL Precision 3630 Tower with 3.60GHz of Intel Core i9-9900k CPU and 16 GB
RAM in a Windows environment.

We briefly introduce the procedure the case study follows. The case study will first determine
the optimal discretization (7%, k™) for DiDi trip data and transit line data in 3D space. The
heatmap h = {h;,i € I} is then generated based on the optimal discretization for each interval
i € 1. Then, we aggregate the heatmap to find RS zones and reveal the locations for new transit
lines and stations (with microtransit services) (see Section 2.3.2 Searching Ridesharing Swarm).
Next, we explore the FLM zones by analyzing the heatmaps h= {flw, w € W} and ridesharing
OD information (see Section 2.3.3 Searching First and Last Mile (FLM) gap). Finally, the results
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are fed into a ConvLSTM network to predict the dynamics of the FLM demand pattern (see
Section 2.3.4. Learning Spatiotemporal Service Gaps). Last, we also analyze land use patterns of
RS zones and FLM zones to validate our findings.

Figure 27 Chengdu second ring

2.4.1 Establishing 3D Discretization

We first establish the 3D discretization (7, k*) for the trip data involved in this case study. To
do that, we need to determine the optimal time interval T*. The solution time of the program
P, is around 20 minutes. And the optimal solution we obtained is T* = 90s, with which we
averaged about 30 coordinates of each vehicle to locate it in a time interval. Next, we explore
the optimal k™ through the program P,, which needs to pre-determine the parameters

(n,m, u, 1). By settingn = 0.1,n = 0.9, u = 0.4, u = 0.6, it took program P, around 2500
seconds to find the optimal number of the pixels, k* = 282, which indicates a pixel size:
325mx325m for each cube.

According to our discussion in Section 3.1.2, we justify the selection of the parameters 1, and u
for this case study by doing the sensitivity analysis on the length of the U], i.e., the length of

(,u - n). Mainly, with a given time interval 7%, we test the performance of the 3D discretization

under each of the four Uls shown in Table 12, where the Ul varies from 0.1 to 0.4 and each
corresponds to a set of parameters selection.

Table 12 Sensitivity analysis of Uls
ul mnpp K" Total noise ratio
0.40 (0.05, 0.95, 0.45, 0.55) 342 0.62
0.30 (0.10, 0.90, 0.40, 0.60) 28?2 0.45
0.20 (0.15, 0.85, 0.35, 0.65) 162 0.37
0.10 (0.20, 0.80, 0.30, 0.60) 102 0.13

Program P, is run under each Ul and generates the optimal solution k* shown in Table 12.
Upon each optimal discretization scheme (7%, k™), the heatmaps h = {h;, i € I} were generated
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and shown as the examples in Figure 28, in which the region completely dominated by transit
or ridesharing is colored red and white respectively, but the regions where neither transit nor
ridesharing services show are in black. Accordingly, the complementary areas are in either red
(transit service-dominant) or white color (ridesharing service-dominant) and competitive
regions and unidentifiable pixels (see Definition 3) are orange with different intensity. In
addition, Figure 28(a) illustrates the solution of a 3D discretization, while Figure 28(b) and (c),
respectively, present a heatmap (10:00:00 - 10:01:30) for the solution with k* = 282 and k* =
162 with the Ul equal to 0.3 and 0.2. Note that there are too many cubes to be clearly outlined
in Figure 6(a). We instead show the height of cubes, 7%, along time dimension.

Figure 28 (a) Discretization of transit and ridesharing trip data in 3D space. Land-use
analysis on heatmaps with different pixel numbers to evaluate resolution. (b) 10:00:00-
10:01:30 heatmap with optimal pixel number 282 (0.3 Ul). (c) 10:00:00-10:01:30 heatmap
with optimal pixel number 162 (0.2 Ul).

We evaluated the merits of the heatmaps in terms of the land-use pattern and the ratio of
noise pixels over all pixels in a 3D discretization solution. We are more interested in a 3D
discretization that has a smaller ratio of noise pixels, because the noise pixels don’t offer much
insightful information about the service gaps for both service modes. The results in Table 12
indicate that the Ul of 0.3 is better than the Ul of 0.4 since the ratio of noise pixels is decreased
from 0.62 to 0.45. This ratio can be further reduced from 0.45 to 0.13 as the Ul decreases from
0.3 to 0.1 but with the significant loss of the resolution. Specifically, we conducted the land-use
analysis to examine the resolution of the heatmaps shown in Figure 28(b) and (c). The region 1
and region 2 (marked out by the dashed outline) are chosen as the benchmark regions. The
actual land-use analysis shows that region 1 is industrial land with a large waste disposal plant,
several major intercity railway lines and railway companies. Region 2 mainly consists of parks,
intercity highways and highway interchange junctions. These results indicate that both regions
have few mobility needs and limited attractiveness for transit and ridesharing services. We next
take a look at the heatmap results. The contours of these two regions are clearly outlined in
Figure 28(b) and they are mainly in black (i.e., no transport services provided). This is consistent
with the actual land-use analysis. But Figure 28(c) does not demonstrate the same quality of the
resolution. Thus, we conclude that reducing Ul from 0.2 to 0.1 significantly compromises the
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resolution of heatmaps. The above analysis confirms our best choice of Ul (= 0.3) for this case
study.

2.4.2 Finding Ridesharing Swarm Zones

According to the approach developed in Section 2.3.2, we project the heatmaps h;,i € I to a 2D
spatial plane and then get the aggregated heatmap H shown in Figure 29. Built upon H, we
search the ridesharing swarms (RS) on the heatmap H. The results are shown in Figure 29 (a), in
which six major RS zones are marked by the dashed line cycles. There are also some small RS
zones scattered over the heatmap H. Combined with the land-use data, these major RS zones
involve a commercial region (marked by a yellow circle on the left side), a residential region
(marked by a blue circle), a mixed region (marked by a purple circle) including residence
community, office buildings and shopping centers, and a big theme park (green circle) in
Chengdu City.

The land-use results indicate that these RS zones do attract/generate significant demand. On
the other hand, the heatmap results show that ridesharing services dominate these mobility
services. These observations together reveal potential deficiency of transit services in either
coverage or flexibility in those RS zones. In order to provide valuable suggestions for improving
the transit services in these RS zones, we further investigate the number of ridesharing trips
between these major RS zones and show the results in Table 13. It is observed that a great
number of daily ridesharing trips occur between the RS zones 1 and 3 (2531.4 per day), RS
zones 3 and 4 (2762.8 per day), RS zones 3 and 5 (2878.5 per day), and RS zones 4 and 5 (7617.8
per day). These results are consistent with the land use features of these RS zones, which are
either large commercial areas or residential communities near the major metro hub, thus
attracting significant and stable demand. For those RS zones, we would suggest adding new
transit stations in these RS zones and additional routes between them (see the blue dashed
lines, Figure 29 (b)) so that public transit can catch some of the demand currently using

Figure 29 (a) Identified RS zones on H with land use. (b) Potential new transit
lines. stations and microtransit services.



Discovering Potential Market for the Integration of
Public Transportation and Emerging Shared-Mobility Services

ridesharing services. The mean number of daily trips and standard deviation also provide hints
on the design of the transit schedule, i.e., line frequency.

On the other hand, this study would suggest microtransit service for the zones that are
characterized by high demand in a large area with low inside transit coverage. For example, our
data analysis observed that the number of daily demands to zones 3 and 2 are around 36,000
and 15,000 trips per day, which respectively counts for 19.5% and 8% of total ridesharing trips
of the study area. Moreover, these zones are large, e.g., about 2.69 mi? for zone 3, with low
inside transit coverage, but surrounded by enough transit services. These features can be
observed from the heatmap. Figure 29 (b) uses a black dashed line to outline the areas covered
by a transit backbone (i.e., they are the red transit dominant pixels and orange competitive
pixels). These features indicate that integrating on-demand service, e.g., microtransit,
ridesharing, or mini-bus services into the current transit system will improve the mobility of
these RS zones. Please note that the approaches of this study help identify the potential areas
that need better transit or hybrid mobility services. To further judge which guidance fits best to
these RS zones and how to implement these suggestions properly is out of the scope of this

study.

Table 13 Number of trips per day between RS zones
RS zones |Mean/day Standard RS zones |Mean/day Standard
pair Deviation pair Deviation
(1,2) 250.9 17.6 (2,6) 5.0 1.7
(1,3) 2531.4 243.5 (3,4) 2762.8 159.5
(1,4) 463.7 76.2 (3,5) 2878.5 396.2
(1,5) 215.6 49.7 (3,6) 431.7 76.2
(1,6) 26.8 7.5 (4,5) 7617.8 709.2
(2,3) 172.0 15.1 (4,6) 131.0 12.7
(2,4) 655.9 94.8 (5,6) 850.6 103.9
(2,5) 333.6 40.8
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2.4.2 Inferring FLM Zones

To explore the potential FLM zones, we averaged every 40 heatmap h;,i € I, each of which

Figure 30 Identified FLM zones (a) Identified FLM zones (b) transit station
distribution map. (c) Overlap of FLM zones and transit services distribution

represents trip information in 90 seconds, to generate the aggregated heatmap flw, w€eEW,
each of which contains 1-hour trip information. Upon h = {A,,, ® € W}, we search those
sandwich areas and then identify the FLM zones by integrating the OD information. Figure 30(a)
presents an example of the results, in which the FLM zones are marked by the yellow dashed
cycle. The whiter the pixel, the greater number of prone-FLM orders the pixel has. Due to the
lack of intermodal trip data, we validate these FLM zones by integrating bus station data and
land-use data. Specifically, we agree with the criterion that an FLM zone often occurs in areas
with lower transit density than the surrounding areas. This situation likely pushes passenger
demand to use ridesharing or other traffic modes since the demand needs a long walking
distance to approach nearby transit backbone lines. With this observation, we compared the
transit service density within the FLM zones with surrounding areas to validate the FLM zones.
Figure 30(b) presents the map of bus station distribution. Each white pixel includes around 50
bus stations, while the black pixel does not possess bus stations. By integrating Figure 30(a) and
Figure 30(b), we obtain Figure 30(c), in which the color of the pixel contour represents the heat
of FLM intensity and the pixel color represents the density of bus stations therein. We observed
that all the FLM pixels are quite dark inside but bright in the surrounding contour. Therefore,
the FLM zones we found indeed have lower transit service density than the surrounding areas,
which is consistent with our criteria. This observation validates the FLM zones we found.
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Figure 31 Land use validation for top FLM zones. Commercial area ( ),
residential area ().

Next, we consider that an attractive FLM area should generate enough demand. This motivates
us to validate the FLM zones by examining the land-use of the study region. We selected the
top nine potential FLM zones found in this case study and checked the corresponding land use
in Gaode Map. The results are shown in Figure 31, in which commercial areas (building
offices/malls/hotels) are marked by yellow, while residential areas are blue. We can see that all
identified FLM zones are either commercial or residential areas, which have a high population
density. Specifically, zones (1, 3, 4, 8, 9) are those areas located around a metro line or within
suburban areas. In addition, the map data indicate that these districts are quite large but with
sparse transit service. There are, indeed, the FLM zones that are not well connected to the
existing backbone transit lines. Here, shared mobility service such as ridesharing or microtransit
services is a good complement to the backbone transit lines. We also noticed that Zones (2, 5,
6, 7) with low transit service are far away from a metro line. They are typical transit deficiency
zones, where new transit routes are needed to make up the service gaps. Overall, the case
study shows our approach works efficiently to find FLM zones and will provide valuable
information to refine current transit networks.

2.4.3 Predicting FLM

We next demonstrate the performance of the machine learning model to predict the
spatiotemporal service gaps. Specifically, we implement the ConvLSTM using the framework
proposed by (Xingjian et al., 2015). Specifically, the model is implemented using the Keras API.
It consists of five layers. The first and third layers are ConvLSTM with 120 size 2X2 kernels and
80 size 3x3 kernels, respectively. The second and fourth layers are batch normalization. Finally,
we used 2 X 2 X 2 kernels to get output shape. Table 14 provides details of the model
parameters.
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Table 14 Description of the ConvLSTM architecture used in the study
Layer (type) Output Shape Param Number
ConvLSTM2D (None, None, 28, 28, 120) 234720
Batch Normalization (None, None, 28, 28, 120) 480
ConvLSTM2D (None, None, 28, 28, 80) 576320
Batch Normalization (None, None, 28, 28, 80) 320
Conv3D (None, None, 28, 28, 2) 1282
Total params 813122
Trainable params 812722
Non-trainable params 400

We use Mean Average Percentage Error (MAPE) and Location Prediction Error (LPE) to evaluate
the performance of ConvLSTM network, which are defined as follows:

MAPE = |yl+1 yl+1| (14)

y1+1

1N ) (15)
LPE = _Z|5z+1 8it1
k=1

where % ., vk | are the prediction and real value of pixel k for time interval i + 1. 8%, ,, 6%,
take 0-1 values, indicates whether pixel k is FLM zone. k is the total number of pixels in an
image. The goal of FLM prediction is to tell where there are potential FLM zones in the near
future to help planning and scheduling of FLM micro-bus service. Therefore, LPE is adopted to
evaluate the performance of FLM prediction. Note that we focus on the location prediction
accuracy of FLM zones.

The training data consists of ﬁw € h as first channel input and corresponding ﬁw € h as second
channel input. The output is the two-channel prediction: flw and flw in the next time interval.
The model is trained with the first three weeks of data. The last week of data is used for
validation. The model achieves 28.42% (MAPE) for the first channel and 4.22% (LPE) for the
second channel. Therefore, the model exhibits high accuracy in predicting the locations of FLM
zones, which provides promising radar for the FLM demand and the corresponding ridesharing
or microtransit services.

Moreover, the prediction results also indicate the time-variant characteristics of the FLM
demand. For example, Figure 32 (a) to (c) indicates the interesting dynamics of FLM demand
during the period covering morning peak hour (8:00-9:00), secondary-peak hour (9:00-10:00)
and evening peak hour (18:00-19:00). More exactly, we noticed that the commercial zone (big



Discovering Potential Market for the Integration of
Public Transportation and Emerging Shared-Mobility Services

shopping centers) on the upper-left corner has lower FLM demand during 8:00 to 9:00. This is
reasonable since most of shopping malls are closed at that time. Moreover, the FLM demand in
the residential zone, i.e. r;, during morning and evening peak hours is higher than that during
the secondary-peak hour. This observation indicates fewer work trips occurring during
secondary-peak hour. We also notice that the residential zone 7, consistently has high FLM
demand. This is because the new metro hub nearby attracts a stable and significant FLM
demand, which calls for the transit service coverage in the area of 1, by either creating new
transit station (inflexible service) or providing microtransit (flexible service). These interesting
findings uncover the dynamics of potential transit demand and benefit future hybrid transit
system development.

Figure 32 Prediction of time-vary FLM heatmap hgy . FLM heatmap of (a) 8:00-
9:00, (b) 9:00-10:00, (c) 18:00-19:00. Whiter pixel indicates a higher possibility of
FLM demand.

2.5 CONCLUSION

This study developed an innovative approach to analyze transit and ridesharing trip data for
discovering mobility needs with different levels of dynamics to support the development of
hybrid urban public transport systems involving both transit and on-demand services. More
exactly, we think the complicated competitive and complementary relationship between transit
and ridesharing trips can reflect the deficiency in the flexibility and coverage of the existing
transit services and provide valuable guidelines to integrate transit service with on-demand
mobility services. To uncover this hidden knowledge in the trip data, we developed the novel
3D trip data analysis approach, which first meshes trip data into an optimal 3D discretization
with uniform cube size, and then collects information from each cube to form the heatmaps.
Built upon the heatmaps, we examined the ridesharing swarm zones, which help discover the
potential deficiency of the flexibility and coverage of existing transit services, and then provide
suggestions for either refining the existing transit network and schedules or integrating
ridesharing or microtransit services. Next, we developed a new approach to infer the first/last
mile zones by discovering the “sandwich” patterns on the aggregated heatmaps. The identified
first/last mile zones provide guidelines for integrating microtransit and/or ridesharing services.
Last, feeding the heatmaps into a two-channel ConvLSTM model, this analysis predicts the
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dynamics of the spatiotemporal service gaps, which will help the hybrid urban public transport
system make strategic plans for involving both public transit and on-demand services. A case
study conducted for the second ring region of Chengdu, China validates the effectiveness and
capability of our analysis approach. This study is our first attempt to discover transit service
gaps by integrating transit and ridesharing trip data. The analysis can be extended to involving
other mobility modes that transit competes with such as bike-sharing and private auto. Even
though this paper primarily used trip data, the developed approach can incorporate other data,
such as demographic and weather data to reach a more comprehensive understanding of
transit service gaps and improve the prediction accuracy.
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3.0 RECOMMENDATIONS

This study can be extended in a number of directions. First, the findings derived from Task 1
and 2 may be limited to the dataset collected from different cities, the second ring area of
Chengdu and the Orlando metropolitan area. Future research can be extended to a
comprehensive case study based on a complete dataset in a city and investigating the
transferability of the findings. Task 1 and Task 2 can be integrated in this future work. More
exactly, the approaches developed by Task 2 will first identify the areas with the service gaps in
the temporal-spatial transit service network. Built upon the potential areas found in Task 2, the
approaches in Task 1 can further analyze the demand characteristics in those potential areas so
that we are able to provide proper suggestions for integrating microtransit and/or ridesharing
into the existing transit network or for adding/adjusting the transit network and service.

Second, the analysis for the supply market is our first attempt to discover transit service gaps by
integrating transit and ridesharing trip data. This analysis can be extended to incorporate other
mobility data and modes that transit competes for demand such as bike-sharing and private
auto. Finally, the supply market analysis primarily used trip data. The developed approach can
also incorporate other data, such as demographic and meteorological data to reach a more
comprehensive understanding of transit service gaps and improve the prediction accuracy.
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4.0 APPENDICES

4.1 Appendix A — Acronyms, abbreviations, etc.

Acronyms Definition

ADA Americans with Disabilities Act
AIC Akaike’s Information Criterion
AMoD Autonomous Mobility-On-Demand
aTaxis Autonomous Taxis

AV Autonomous Vehicle

BART Bay Area Rapid Transit

BIC Bayesian Information Criterion
BRT Bus Rapid Transit

CBG Census Block Group

CBSA Core-Based Statistical Area

CGT Connetics Transportation Group
ConvLSTM Convolutional Long Short Term Memory
CTA Chicago Transit Authority

EPA Environment Protection Agency
FLM First and last mile

GIS Geographic Information Systems
GTFS General Transit Feed Specification
HH Household

HU Housing Units

KNR Kiss-and-Ride

LPE Location Prediction Error

LRT Log-Likelihood Ratio Test

LSTM Long Short Term Memory

MAPE Mean Average Percentage Error
MNL Multinomial Logit

MSA Metropolitan Statistical Areas
PNR Park-and-Ride

RP Revealed Preference

RSG Resource Systems Group

SAEV Shared Autonomous Electric Vehicles




Discovering Potential Market for the Integration of
Public Transportation and Emerging Shared-Mobility Services

Acronyms Definition

SAV Shared Autonomous Vehicles

SC Schwarz Criterion

SLD Smart Location Database

SP Stated Preference

TNC Transportation Network Company
VMT Vehicle Miles Traveled

4.2 Appendix B — Associated websites, data, etc., produced

Table 15 Model Results for Access Mode
Base Category Parameter Wheelchair | Micro- Carpool | TNCor Drove
mobility Taxi Alone
Intercept -6.5879 -3.6756 -3.7920 | -5.2544 -2.9104
(0.0023) (0.0012) (0.0019) | (0.0033) | (0.0011)
Access Length Distance from the origin to 1.3802 1.0966 1.2077 0.8382
transit stop (mile) (0.0004) | (0.0004) | (0.0009) | (0.0011)
Destination Place Airport -0.6220 0.6333 1.6289 4.5079 0.7242
(0.0765) (0.0141) | (0.0077) | (0.0080) | (0.0208)
Medical, Hospital -1.7809 0.1199 0.4373 -0.7863 0.1350
(0.0145) (0.0061) | (0.0057) | (0.0345) | (0.0102)
Sporting Events -0.9363 0.9780 3.4428 -3.0877 2.3677
(0.0944) (0.0144) | (0.0080) | (0.4182) | (0.0155)
University/college -0.3235 0.7579 0.1250 1.0043 1.0782
(0.0214) (0.0050) | (0.0060) | (0.0122) | (0.0064)
Origin Place Shopping -0.3878 -0.5704 -0.6115 | 0.3203 -0.3722
(0.0088) (0.0085) | (0.0071) | (0.0171) | (0.0111)
Social Visit 0.7676 0.2216 0.4953 0.2782 -0.2334
(0.0057) (0.0048) | (0.0041) | (0.0125) | (0.0104)
Transfer Number of transfers from -0.1726 -0.2860 -0.2565 | -0.2274 | -0.4630
the origin (0.0033) (0.0021) | (0.0019) | (0.0060) | (0.0036)
Number of transfers to the -0.1730 -0.3844 -0.2476 | -0.1449 | -0.4698
destination (0.0035) (0.0022) | (0.0019) | (0.0052) | (0.0035)
Two-way trip Trip in the Opposite 0.0474 0.1887 0.0287 -0.3186 | 0.2456
Direction-Yes (0.0035) (0.0016) | (0.0016) | (0.0053) | (0.0024)
Visitor Visitor-Yes -0.6948 -0.8573 0.0533 -0.8857 -0.4065
(0.0138) (0.0061) | (0.0039) | (0.0102) | (0.0081)
Time Period Midday 0.0369 -0.1284 -0.2435 | -0.3179 -0.2294
(0.0033) (0.0021) | (0.0020) | (0.0061 | (0.0033)
Evening -0.2170 -0.0934 -0.2140 | -0.7531 -0.6177
(0.0071) (0.0035) | (0.0033) | (0.0114) | (0.0069)
Month December 0.4852 0.2096 0.0561 -0.1235 -0.2026
(refernce -January) (0.0070) (0.0039) | (0.0038) | (0.0169) | (0.0081)
February 0.4805 -0.1917 -0.1677 | -0.0660 0.1235
(0.0035) (0.0024) | (0.0023) | (0.0081) | (0.0036)
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Base Category Parameter Wheelchair | Micro- Carpool | TNCor Drove
mobility Taxi Alone
November -0.4131 0.1986 0.1971 | 0.9348 -0.1984
(0.0284) (0.0137) | (0.0132) | (0.0364) | (0.0307)
Age Young Adults (18-34 years -0.2057 -0.2083 -0.1087 | -0.2024 | -0.2400
old) (0.0054) (0.0019) | (0.0017) | (0.0052) | (0.0029)
Disability Disability-Yes 5.6846 -0.1091 -0.1853 | -0.4964 | -0.1382
(0.0024) (0.0035) | (0.0040) | (0.0146) | (0.0068)
Driver License Driver License-Yes -0.3566 -0.1025 0.1838 0.2740 0.7187
(0.0043) (0.0017) | (0.0015) | (0.0039) | (0.0022)
Ethnicity African American 0.0350 -0.4618 -0.1985 | -0.3017 | -0.4848
(0.0034) (0.0020) | (0.0018) | (0.0058) | (0.0033)
Asian 1.0739 -0.8116 -0.1800 | -0.3127 | -0.1952
(0.0166) (0.0132) | (0.0085) | (0.0220) | (0.0135)
Hispanic -0.4542 -0.4058 -0.1067 | 0.1160 -0.2807
(0.0063) (0.0025) | (0.0023) | (0.0059) | (0.0038)
Gender Male -0.1961 1.1017 -0.0648 | -0.3152 | -0.1626
(0.0032 (0.0015) | (0.0016) | (0.0051) | (0.0027)
Number of Vehicles | Number of Vehicles (4-7) -0.3735 0.2450 0.7470 0.6076
(0.0293) (0.0082) | (0.0062) (0.0104)
HH Income Middle Income ($20K-$50K) | -0.4078 0.2643 0.1236 | -0.1562 | 0.1743
(0.0048) (0.0018) | (0.0018) | (0.0051) | (0.0030)
High Income ($50K-$100K) -0.5003 0.4240 0.7081 | 0.4793 1.3374
(0.0142) (0.0033) | (0.0029) | (0.0075) | (0.0035)
Very High Income (More -1.0835 1.8597 47172 | 0.9611 2.6380
than $100K) (0.0639) (0.0067) | (0.0037) | (0.0317) | (0.0092)
- Employment and household | -0.2846 0.0218 -0.0740 | -0.3697 | -0.1725
entropy (0.0036) (0.0020) | (0.0018) | (0.0054) | (0.0030)
- Gross education(8-tier) -0.0089 0.0059 0.0032 | 0.0051 0.0046
employment density (0.0002) (0.0001) | (0.0002) | (0.0003) | (0.0003)
(jobs/acre) on unprotected
land
- Gross entertainment (5-tier) | 0.0875 -0.0246 -0.0387 | 0.0220 -0.0578
employment density (0.0009) (0.0007) | (0.0006) | (0.0015) | (0.0012)
(jobs/acre) on unprotected
land
- Gross industrial (5-tier) 0.0588 0.0728 -0.0349 | 0.0837 -0.0138
employment density (0.0012) (0.0009) | (0.0008) | (0.0025) | (0.0015)
(jobs/acre) on unprotected
land
- Gross office (8-tier) -0.0479 0.0431 0.0104 -0.0074
employment density (0.0007) (0.0006) | (0.0004) (0.0009)
(jobs/acre) on unprotected
land
- Gross residential density -0.0672 -0.0141 -0.0396 | -0.0144 | -0.0391
(HU/acre) on unprotected (0.0007) (0.0004) | (0.0004) | (0.0011) | (0.0006)
land
- Intersection density in -0.0143 0.0040 -0.0078 | -0.0112 | -0.0010
terms of multi-modal (0.0002) (0.0001) | (0.0001) | (0.0003) | (0.0001)
intersections having three
legs per square mile
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Base Category Parameter Wheelchair | Micro- Carpool | TNCor Drove
mobility Taxi Alone
- Number of jobs per 0.0158 -0.0040 -0.0052 | -0.0156 | -0.0157
household (0.0002) (0.0001) | (0.0001) | (0.0003) | (0.0002)
- Regional Diversity* 0.1822 -0.2039 -0.1312 | -0.1877 | -0.1952
(0.0046) (0.0026) | (0.0024) | (0.0076) | (0.0041)

* regional diversity measures the deviation of the CBG employment rate (jobs per person) from the regional
average employment rate.

Table 16 Model Results for Egress Mode
Base Parameter Wheelchair | Micro- Carpool TNC or Taxi | Drove
Category mobility Alone
Intercept -13.4066 -4.7544 -3.6420 -6.7790 -5.1356
(7.9537) (0.3286) (0.3349) (0.7589) (0.6185)
Egress Length | Distance from a 1.3488 1.9382 1.9516 1.9496
transit stop to the (0.0785) (0.0730) (0.0743) (0.0738)
destination (mile)
Destination Medical, Hospital 1.6571
Place (0.5022)
Shopping -0.5440 -0.8199
(0.2947) (0.4143)
University/college -8.2498
(1.5404)
Origin Place Airport 1.6083 1.2316
(0.3247) (0.6448)
Medical, Hospital 1.3308 1.2256
(0.5081) (0.5121)
Transfer Number of transfers -0.2695 -0.3085 -1.7543
from the origin (0.1084) (0.1304) (0.3952)
Number of transfers -0.3313 -0.3416 -2.0377 -1.3293
to the destination (0.1084) (0.1226) (0.6283) (0.3030)
Two-way trip | Trip in the Opposite -0.6058
Direction-Yes (0.3155)
Time Period Midday -0.5634 -1.2591
(0.1478) (0.3002)
Month February -0.3214 -0.8936
(0.1499) (0.4040)
Disability Disability-Yes 0.3710
(0.2085)
Driver Driver License-Yes 0.9973 2.7107
License (0.3394) (0.4122)
Ethnicity African American -0.4305 -0.5889 -0.8613 -1.7695
(0.1279) (0.1513) (0.3531) (0.2962)
American Indian 0.8178 -1.7185
(0.4512) (1.0373)
Asian 1.4318
(0.5830)
Hispanic -0.3602 -0.2862 -1.1175
(0.1457) (0.1597) (0.2841)
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Base Parameter Wheelchair | Micro- Carpool TNC or Taxi | Drove
Category mobility Alone
Gender Male -0.4788
(0.2099)
HH Income Middle Income ($20K- 0.5542 0.9792
$50K) (0.1197) (0.3493)
High Income ($50K- 0.3693 0.7323 1.4262 0.9137
$100K) (0.2035) (0.1930) (0.4377) (0.2805)
Number of -0.0016 -0.0042
households in (0.0007) (0.0014)
Destination CBG that
own zero automobiles
Gross entertainment -0.0880 -0.2173
(5-tier) employment (0.0427) (0.1125)
density (jobs/acre) on
unprotected land of
destination
Proportional 3.9741 3.8362 4.8458
Accessibility to (1.3076) (1.1854) (1.2974)
Regional Destinations
Regional Diversity of 1.4658 0.7102
destination (0.4872) (0.3621)




