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ABSTRACT 
Most smartphone owners today regularly use navigation applications such as Google Maps and 
Waze, for route guidance. By accessing real-time information, these apps provide users with 
updated maps and guidance on the quickest routes to avoid possible delays and congestion. 
These apps have become so popular that a number of communities have blamed navigation 
apps for increased local cut-through traffic. Although the use of mobile devices for in-vehicle 
navigation has become ubiquitous among drivers, there is limited research investigating the 
true impact of routing apps on trip routing or travel behavior. The goal of this research was to 
study the impact of such decentralized traveler information on the choice of trip routing by 
individuals and develop approaches for diversion prediction and traffic management for 
congestion management. This research used a three-pronged approach. 

The Georgia Institute of Technology-led research evaluated trip re-routing potential of route 
guidance apps, how drivers utilized the information provided, and the impact of traffic re-
routing on roadway facility usage, congestion, and prevailing speeds. This research investigated 
the travel behavior associated with navigation app usage through the collection of a stated 
preference questionnaire (N=237) and location history data (N=27). Major findings of this study 
included a variety of characteristics associated with navigation apps and no singular uniform 
usage of navigation apps for all users or roadway facilities, a difference in stated vs real 
behavior associated with navigation app usage and travel behavior. Additionally, this study 
reveals the many challenges associated with collecting personal location history data through 
face-to-face surveys and online.  

The Florida International University led research developed a direct method to estimate the 
diversion for individual incidents based on mainline detector data and incident data. It was 
found that the diversion rate can range from about 4% to 22%, depending on the severity 
(mainly reflecting duration), lane blockage (up to three out of five lanes), and the time of 
incident occurrence. The study found evidence that the diversion was constrained by the 
capacity of the signals at the off-ramps, indicating the need for special signal control plans 
during incidents to increase the capacity of the off-ramps and adjacent signals leading to the 
main parallel routes. Data analytic models were developed in the study, allowing the prediction 
of the diversion rate based on the incident severity, number of blocked lanes, time of the 
incident occurrence, and incident locations. Three different models were developed utilizing LR, 
SVM, and MLP.  Among the developed models, the MLP model appeared to produce the best 
results. The models developed in this study can be used for prediction of diversion rate based 
on incident characteristics. The Florida International University study also performed a survey 
similar to the Georgia Tech survey in Florida and found out the stated diversion rates in the 
surveys were higher than the observed diversion in the detector data. 

The Jackson State University led research focused on the application of the traveler information 
data in congestion management. This part of the study used decentralized traveler information 
data to locate potential congestions to be applied with the gating control traffic management 
strategies to reduce traffic congestions in emergency events. Travel time reliability measures 
were applied to account for delays and identify significant traffic congestions for potential gate 
locations in evacuation zones. Performance of the gating control traffic management strategies 
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were evaluated using a case study, with DTALite program, a simulation based DTA tool. The 
traffic simulations in the case study for the evacuation network in Memphis, TN configured with 
the gating control strategies using the decentralized traveler information data showed the 
effectiveness of the gating control traffic management strategies in managing evacuation traffic 
operations.  
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EXECUTIVE SUMMARY 
Proliferation of mobile devices with routing apps such as Google Maps, Waze, INRIX, TomTom, 
etc., allows any mobile-enabled drivers to avoid congestion through real-time re-routing.  
However, to date, the real impacts of these routing apps on system and local traffic across the 
roadway infrastructure are largely unknown.  The goal of this research was to study the impact 
of such decentralized traveler information on the choice of trip routing by individuals and 
develop approaches for diversion prediction and traffic management for congestion 
management.  

This report is organized as a compendium of three reports from the three participating 
universities: Georgia Institute of Technology, Florida International University, and Jackson State 
University.  The Georgia Institute of Technology study focuses on trip re-routing potential of 
route guidance apps.  The Florida International University study focuses on quantifying and 
predicting diversion.  The Florida International University study also administered the Georgia 
Tech developed survey in Florida and used the stated preference results obtained from it to 
compare with the revealed preference results from the diversion study.  The Jackson State 
University study focused on the application of the traveler information data in congestion 
management and used decentralized traveler information data to locate potential congestions 
to be applied with the gating control traffic management strategies to reduce traffic 
congestions in emergency events. Summaries of these three studies are provided in the 
following subsections. 

CHAPTER 1: TRIP RE-ROUTING POTENTIAL OF ROUTE GUIDANCE APPS (GEORGIA 

INSTITUTE OF TECHNOLOGY STUDY) 
As more drivers turn to smartphone navigation apps, such as Google Maps and Waze, for up-to-
date traffic information and trip routing, it is increasingly important to understand the impact 
of these devices on the choices of trip routing by individuals and the potential impact on 
roadway facility selection by drivers, congestion, and congestion management. The goals of this 
part of the study were to evaluate, based on stated preference by users, (1) the trip re-routing 
potential of route guidance apps, (2) how drivers utilized the information provided, and (3) the 
impact of traffic re-routing on roadway facility usage, congestion, and prevailing speeds. 

The findings of this project from a user survey and location data include the behavior 
characteristics of navigation apps users. Navigation apps, most commonly Google Maps, were 
typically used for first-time and infrequent trips. Across all types of roadways, neighborhood, 
major, and freeway, the use of apps was less frequent than the actual use of the road. 
Navigation apps had a strong rerouting potential as smartphone app users followed the 
suggested route for at least 80 - 99% of trips (47%) and another 25% of users followed the 
suggested route for 100% of trips. A 3-5 min time savings was required for users to accept a 
routing change from the app. The survey captured a difference in general and personal 
perception of driver speed and alertness in neighborhood roads due to navigation apps. 
Although individuals reported an overall decrease of alertness of drivers in neighborhood roads 
due to navigation apps, they did not perceive the same decrease in their personal driving 
alertness. In addition to survey responses, empirical evidence of smartphone app routing usage 
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was collected through personal Google Location History (GLH) data donated by survey 
respondents. GLH data has the potential to provide high-resolution location and routing data 
that can be used to study route choice without a burden on the respondent. In this study, the 
collection process and nature of the sensitive data limited sample size of responses. Initial GLH 
data analysis results indicated a month of decreased travel and no change in navigation app 
usage after the I-85 bridge collapse in Atlanta, but full conclusions could not be drawn from the 
results of the analysis due to sample size limitations of the GLH dataset.  

The results of the study will be useful in providing input to transportation management 
agencies on the current state of navigation app usage and the associated potential rerouting 
behavior.  

CHAPTER 2: DIVERSION PREDICTION (FLORIDA INTERNATIONAL UNIVERSITY STUDY) 
Existing studies have used stated and revealed preference surveys to estimate route diversion 
during incidents. This part of the study developed a more direct method to estimate the 
diversion for individual incidents based on mainline detector data and incident data. It was 
found that the diversion rate can range from about 4% to 22%, depending on the severity 
(mainly reflecting duration), lane blockage (up to three out of five lanes), and the time of 
incident occurrence.  

The study found evidence that the diversion was constrained by the capacity of the signals at of 
the off-ramps, indicating the need for special signal control plans during incidents to increase 
the capacity of the off-ramps and adjacent signals leading to the main parallel routes. Capacity 
analysis of the off-ramp signals indicated that the two off-ramps that provided exits to the main 
connectors to the alternative routes had a limited amount of access capacity available for 
vehicles to exit the freeway to alternative routes. 

Data analytic models were developed in the study, allowing the prediction of the diversion rate 
based on the incident severity, number of blocked lanes, time of the incident occurrence, and 
incident locations. Three different models were developed utilizing LR, SVM, and MLP.  Among 
the developed models, the MLP model appeared to produce the best results. The models 
developed in this paper can be used for prediction of diversion rate based on incident 
characteristics.  

A limitation of this study is that the developed method estimates the overall diversion rate and 
not the diversion at each off-ramp.  Most transportation agencies in the United States do not 
install sensors on the off-ramps.  It is recommended that agencies start installing sensors at the 
off-ramps to allow more detailed examination of the diversion.  

Based on the results from this section, it can be concluded that the use of detector data 
combined with traffic flow and statistical techniques is viable to estimate diversion. This will 
become even more important, as agencies increase their emphasis on performance-based 
planning, planning for operations, and operations of their systems. It is expected that the 
diversion models are site specific and depend on the available capacity and characteristics of 
the alternative routes.  The transferability of the models between locations and similar 
locations in different regions should be investigated in future studies. 
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CHAPTER 3: GATING CONTROL TRAFFIC MANAGEMENT USING DECENTRALIZED 

TRAVELER INFORMATION DATA (JACKSON STATE UNIVERSITY STUDY) 
This part of the study used decentralized traveler information data to locate potential 
congestions to be applied with the gating control traffic management strategies to reduce 
traffic congestions in emergency events. Travel time reliability measures were applied to 
account for delays and identify significant traffic congestions for potential gate locations in 
evacuation zones. Performance of the gating control traffic management strategies were 
evaluated using a case study, with DTALite program, a simulation based DTA tool. The traffic 
simulations in the case study for the evacuation network in Memphis, TN configured with the 
gating control strategies using the decentralized traveler information data showed the 
effectiveness of the gating control traffic management strategies in managing evacuation traffic 
operations. From this research, the following findings were observed. 

1. The gating control traffic management strategies deployed using the decentralized 
traveler information data, could well reduce congestion for emergency events under 
extreme weather. The travel time reliability data analysis based on the probe data could 
catch the dynamic nature of potential congestions and achieve improved performance 
of average travel time and traffic conflicts in a realistic large scale evacuation network. 

2. According to the average buffer time index results, there was one segment checked 
during AM peak hours and four segments checked during PM peak hours. Compared to 
AM peak hours, there was more low travel reliability during PM peak hours. The 
segments on which the index values were larger than 0.55 during PM peak hours were 
segment 6 on TN-277 Southbound and segment 10 on Democrat Road Eastbound in 
Zone I, segment 17 on Getwell Road Southbound in Zone II, and segment 29 on TN-204 
Northbound in Zone III. They were identified as the potential traffic congestion 
locations. 

3. Simulation results of the gating traffic management strategies with the realistic large scale 
evacuation network in fourteen scenarios, showed that all the gating scenarios could achieve 
better evacuation performance with reduced average travel time than the non-gating strategy 
could. The smallest average travel time for scenario was from 57.8 minutes with 72.9% 
improvement at the lowest demand of 286,000 vehicles to 151.2 minutes with 48.0% 
improvement at the highest demand of 640,000 vehicles. The simulation results also showed that 
the number of possible traffic conflicts using a gating strategy was always lower than that using 
the non-gating strategy. The best scenario improved traffic conflicting with 59.9% improvement 
at 376,000 evacuating vehicles and 63.1% at 64,000 vehicles. The simulation results confirmed 
that a gating control strategy could improve the evacuation performance by reducing the average 
travel time and total possible traffic conflicts in evacuation traffic operations in the network.
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STUDY DESCRIPTION 
Proliferation of mobile devices with routing apps such as Google Maps, Waze, INRIX, TomTom, 
etc. has made possible congestion avoidance through real-time re-routing of vehicles for any 
mobile-enabled driver.  However, to date, the real impacts of these routing apps on system and 
local traffic across the roadway infrastructure are largely unknown.  There is a limited amount 
of research that has broadly investigated issues such as the impact of social media on 
transportation policy (Gal-Tzur et al., Bregman and Watkins), usage patterns of smartphone 
apps (Jones et al.), and use of gaming concepts to influence driver behavior (McCall and 
Koenig).  However, there is a dearth of research investigating the impact of routing apps on trip 
routing or travel behavior.  This study attempts to fill this gap and gather evidence and quantify 
the relationship between routing app usage and propensity of alternative route choices by 
routing app users. 

The goal of this research was to study the impact of such decentralized traveler information on 
the choice of trip routing by individuals and develop approaches for diversion prediction and 
traffic management for congestion management.  

This report is organized as a compendium of three reports from the three participating 
universities:  Georgia Institute of Technology, Florida International University, and Jackson State 
University. The Georgia Institute of Technology study (Chapter 1) focused on trip re-routing 
potential of route guidance apps. The Florida International University study (Chapter 2) focused 
on quantifying and predicting diversion. The Florida International University study also 
administered the Georgia Tech developed survey in Florida and used the stated preference 
results obtained from it to compare with the revealed preference results from the diversion 
study.  The Jackson State University study (Chapter 3) focused on the application of the traveler 
information data in congestion management and used decentralized traveler information data 
to locate potential congestions to be applied with the gating control traffic management 
strategies to reduce traffic congestions in emergency events. 
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CHAPTER 1: TRIP RE-ROUTING POTENTIAL OF ROUTE 

GUIDANCE APPS 
(GEORGIA INSTITUTE OF TECHNOLOGY STUDY)  
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1.1 INTRODUCTION 
With the introduction of smartphone navigation apps, drivers have an increasing number of 
options to make informed route choice decisions using information from all available routes 
and current traffic conditions. It is important to understand how information from these apps 
affect route choice behavior as governments invest in variable message signs (VMS) and other 
Active Transportation and Demand Management (ATDM) strategies. In addition to potentially 
disrupting the effectiveness of traditional traffic information management strategies, several 
communities have pointed to navigation apps for disrupting typical traffic patterns and 
increasing local cut-through traffic. Although most smartphone owners today regularly use 
navigation applications such as Google Maps and Waze for guidance of the quickest routes, 
there is limited research investigating the true impact of routing apps on trip routing or travel 
behavior. This research aims to fill the gap of knowledge surrounding navigation apps by 
analyzing the impact of traffic routing smartphone applications on roadway facility selection.  

1.1.1 Objective 
The goal of this study was to understand the usage of smartphone navigation apps and their 
potential impact on trip routing. Objectives of this project include evaluating (1) trip re-
routing potential of route guidance apps, (2) how drivers utilize the information provided, 
and (3) the impact of traffic re-routing on roadway facility usage, congestion, and prevailing 
speeds.  

1.1.2 Scope 
The tasks for this project were as follows: 

1. Conduct a literature review of trip diversion potential of smartphone apps and trip 
routing studies using location history data.  

2. Implement and analyze a survey questionnaire in Atlanta, GA to study the trip re-routing 
potential of navigation apps by asking users about their preferences and behavior 
related to their usage.  

3. Obtain and analyze Android location data to uncover empirical evidence of smartphone 
routing app usage and roadway function class frequency in trips. 
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1.2 LITERATURE REVIEW 
Over the past ten years, the ownership of mobile devices has dramatically risen to over 80% of 
the US adult population (Pew Research Center 2019). The increasing penetration of 
smartphones has allowed access to real-time crowdsourced traffic data with routing apps such 
as Google Maps, Waze, INRIX, and TomTom. Today, navigation apps are ubiquitous as almost all 
smartphone users utilize mobile driving directions at least some of the time (Anderson 2016). 
These routing apps access network-wide traffic information to relate the overall traffic 
conditions and users’ shortest origin-destination path. Real-time information allows users to 
make both pre-trip and en-route navigation decisions. Although these apps provide users with 
the possibility of congestion avoidance, they have also resulted in a number of traffic incidents 
and a growing concern of new congestion patterns (Cabannes et al. 2018). 

Incidents involving navigation app users following routes into dangerous environments have 
become frequent headlines in the news; vehicles have incorrectly routed through insufficient 
roads, off cliffs, and through fire and floods (Kennedy 2019, Graham 2017). Drivers’ willingness 
to diverge and rely on real-time smartphone navigation apps has become an increasing safety 
concern. However, there is a limited understanding of how these apps are truly used and 
impact traffic behavior. Previous research on the impact of real-time information on traffic 
diversion and the human factors of route diversion has typically involved in-vehicle navigation 
systems, not smartphone apps (Mahmassani et al. 1991, Allen et al. 1991,). These studies 
suggest navigation system characteristics such as the clarity of directions and visibility of real 
time traffic information have significant effects on driver diversion yet only a limited amount of 
research investigates the usage patterns and consumer preferences of today’s crowdsourced 
traffic apps (Khoo et al. 2016, Paniko 2018). Additionally, it has been found that as the 
familiarity of drivers with the route increases, they are more reluctant to follow advice unless 
they find it convincing (Bonsall 1992). This dearth of research investigating the impact of 
routing apps on trip routing and travel behavior is concerning because of the current reliance of 
many users on these apps.  

A number of anecdotal claims from communities across the US blame navigation apps for 
induced, cut-through traffic and increased congestion (Cabannes et al. 2018). Several public 
policy concerns are associated with potential cut-through traffic due to higher demands on 
local infrastructure, disruptions to residential travel times, and pedestrian safety concerns. 
Local roads and residential streets were not built for a large volume of vehicles associated with 
rerouting via cut-throughs. In response, cities and residents have taken unsuccessful measures 
to prevent rerouting, including adding fake detours and prohibiting travel of non-residents on 
neighborhood streets (Britschgi 2018). Although an increase in cut-through traffic has been 
observed at specific sites through field data (Cabannes et al. 2018, Streetlight 2019), there has 
not been an explicit correlation with navigation apps because of limited data related to driver 
utilization of the information provided. Real-time shortest path routes are available to anyone 
using a navigation app but driver behavior may not match the recommended routing. Although 
these apps allow access to the “quickest” route, drivers may not choose to use the app or 
follow the suggested route. Therefore, understanding users’ stated preferences and revealed 
behavior in the use of navigation apps is especially important. Theoretical models have 
attempted to simulate the usage of local rerouting potential of navigation apps by considering 
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the behavioral differences between app users and non-app users (Cabannes et al. 2018, Thai et 
al. 2016). Yet, there has not been a multi-scale analysis to determine if the apps are better or 
worse for traffic networks as a whole.  

The true impacts of the navigation app trend on the roadway infrastructure and system remain 
largely unknown. The aim of this work is to study the impact of smartphone route guidance 
apps on the choice of trip routing by individuals and the potential impact on roadway facility 
selection by drivers.  

1.3 METHODOLOGY 
To capture route guidance app user’s preferences and behavior, a navigation app behavior 
questionnaire accompanied by quantitative spatial historical location data was implemented. 
The questionnaire was developed to evaluate rerouting potential of navigation apps and the 
trips types and lengths associated with navigation app usage. In addition, travel time and 
location information were obtained from a subset of participants through voluntary download 
of Google Location History (GLH) data. GLH data can be passively collected from smartphone 
users with varying accuracy and frequency depending on the mobile phone configuration and 
environment. GLH Timeline, a smartphone feature that tracks mobile devices and saves 
locations over a large temporal and spatial span and granularity, allows device users to 
download their historical location data. This active nature of data retrieval, in addition to user 
privacy concerns, make it an underutilized dataset (Ruktanonchai et al. 2018). 

While the survey provides a method to evaluate the proclivity of drivers to use cut-throughs 
suggested by navigation apps, it is challenging to quantify the likelihood of doing so.  The GLH 
data was collected to provide the ability to better quantify the percentage of re-routing and the 
conditions under which re-routing occurred by observing the differences in behavior of drivers 
over time as well as with and without smartphone-based navigation use.   

A specific experiment was designed to study the effect of smartphone-navigation related 
diversions.  There was a major incident in Atlanta on March 30 of 2017 in which there was a 
failure of a section of a bridge on I-85 which caused a complete shutdown of a significant 
section of the interstate road.  This forced rerouting to alternate routes and potentially 
increased use of navigation application to get around this blockage.  GLH data was therefore 
requested from the survey participants for the months immediately before and after the 
incident (March and April 2017) and the corresponding control period of March and April of the 
following year (2018). 

In addition to the use case of the I-85 bridge collapse experiment, the GLH data was also 
expected to serve to verify the reliability of the revealed preference information provided by 
the participants in the survey. For the participants who answered the questionnaire as well as 
provided GLH data, the GLH data was analyzed to find evidence to support the cut-through and 
diversion behavior that the participants indicated in their responses.   

1.3.1 User Survey 
To evaluate the relationship between routing app usage and propensity of alternative route 
choices by users, attitudinal survey data and empirical location history data were collected 
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through an interview-administered questionnaire. In June, August, and November of 2018, 
the survey was deployed at four community events in the Atlanta, Georgia area (Figures 1-1 
to 1-3): 

• June 10, 2018, Atlanta Streets Alive, Marietta St., Atlanta, GA 30318  

• August 18, 2018, Piedmont Arts Festival, Charles Allen Dr. and 10th St., Atlanta, GA 30309 

• August 19, 2018, Piedmont Arts Festival, Charles Allen Dr. and 10th St., Atlanta, GA 30309 

• November 11, 2018, Georgia Tech Football Tailgate, Bobby Dodd Way, Atlanta, GA 30313*  
 
The fourth event, indicated with *, 
deployed a modified and shortened survey 
to target Android users in an attempt to 
increase the GLH data downloads. The 
attitudinal survey instrument was a four-
page paper script with 24 questions to be 
completed by a personal interview, with a 
shortened version for the fourth event. 
The average questionnaire interview 
completion time was six minutes (a 
maximum of 13 minutes). By conducting 
interviews face-to-face, there was a higher response rate and interviewers built a sense of 
trust during the questionnaire portion of the survey, in hopes that the respondents would 
feel comfortable sharing sensitive GLH during the data download process. Interviewers 
followed the questionnaire script to ask participants a series of questions about their 
navigation app usage. A small novelty pen was used as an incentive to those participants 
willing to complete the questionnaire and a $10 Amazon gift card was offered to those 
participants willing to donate GLH data.  

1.3.2 Location History Data Collection 
Although a survey can capture stated travel behavior and preferences, spatiotemporal 
location history can reveal actual travel behavior. Through the face-to-face survey, 
participants who responded to the survey about navigation use had the option of providing 
four months of smartphone location data for the months of March 2017, April 2017, March 
2018, and April 2018. These months were chosen because of their relationship with the I-85 
bridge collapse in Atlanta, Georgia and associated increase in navigation app usage. After I-
85 was closed on March 20, 2017, the public turned to real-time commute data to adapt to 
the new traffic patterns (Douglas 2017). Only Android phone users were eligible to 
participate in the data download process because android phones passively share more 
location data than iOS users (Schmidt 2018). Interviewers explained the GLH data collection 
procedure, consent and confidentiality agreement, and participant rights, before the 
participants started the automated GLH data collection process. Participants were asked to 
log into their Google account on a secure research laptop, click a link on the survey 
webpage that would automatically download specified smartphone location data stored in 
their Google account, and then logout of their account to ensure no further access for the 

Figure 1-1: Survey 1, June 10, 2018, Atlanta 
Streets Alive 
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researchers to their account. Data was downloaded in a Keyhole Markup Language (KML) 
format with attributes including a timestamp, latitude, longitude, calculated activity, and 
distance traveled. 

1.3.3 Survey Methodology  
Survey participants were sampled using a 
convenient intercept method. 
Interviewers at a central hub approached 
individuals walking by and asked to 
interview them about how they use 
navigation in their vehicle. Participants 
were further screened as only adults who 
regularly drive a vehicle and mainly use a 
smartphone were eligible for participation 
in the survey. For the Georgia Tech 
football tailgate data collection this was 
further constrained to only Android users 
to increase the sample of respondents who could potentially provide GLH data as well.  If 
respondents did not meet the eligibility criteria, they were not able to participate in the 
survey and were recorded as an uncaptured response. Although this is a population 
selection bias, this technique eased the difficult nature of sensitive data collection and the 
results can still be used for detecting relationships among different phenomena.  

Participants answered a variety of 
questions including frequency experience 
questions associated with their usage of 
roadways and navigation apps, multiple 
choice questions about their typical 
behavior with navigation apps, and Likert-
scale questions to quantify relative 
changes in driving behavior associated 
with navigation app usage. The end of the 
questionnaire included sociodemographic 
questions and an open-ended section 
where the respondent could relay any 
additional comments related to the use of navigation apps. After completing the 
questionnaire, respondents had the option of continuing to the GLH data collection 
procedure. The full-length interviewer script is available in Appendix B with * indicating the 
questions slightly modified and ** indicating the questions removed in the shortened 
survey used on 11/10/18.  

1.3.4 Location History Data Collection and Processing 
Eligible participants that were willing to provide their GLH data for this study were 
challenging to recruit. Only 11% of questionnaires resulted in GLH data collection. A limiting 

Figure 1-2: Survey 2 & 3, August 18 & 19, 
2018, Piedmont Arts Festival 

Figure 1-3: Survey 4, November 11, 2018, 
Georgia Tech Football Tailgate 
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factor for the number of data downloads was the eligibility process, in which participants 
were restricted to Android users with location services enabled on their smartphone; only 
25% of questionnaire respondents were eligible to participate in the data collection after 
the first three survey implementations. The data collection time commitment and data 
privacy concerns were two of the most cited refusals when asked to continue with the 
location data process. With half of eligible participants willing to share GLH data and  8 
participant dropouts during the data collection process, a total of 22 GLH data downloads 
were completed during the first three survey implementations.  

Table 1-1: Initial GLH Data Collection Responses 

Date 

 

Complete
d 
Question
naire 

Possible GLH Data 

Collection Participants Willing Data Collection Participants 

Android 
Users 
with 
Location 
Services 

% of 
Completed 
Questionna
ires 

Starte
d 
Data 
Collec
tion 
Proce
ss 

Data 
Colle
cted 

% of 
Completed 
Questionn
aires 

6/10/201
8 30 10 33% 8 8 27% 

8/18/201
8 117 28 24% 8 6 5% 

8/19/201
8 61 22 36% 11 8 13% 

Initial 
Total 208 60 29% 27 22 11% 

11/10/20
18 * 29* 11* 38% 8* 5* 17% 

Total 237 71 30% 35 27 11% 

 

Limited participants in the GLH data collection during the first three face-to-face survey 
implementations resulted in the development of a shorter survey attempting to target 
participants that could provide GLH data. The shorter navigation use survey included 17 
questions to gather how respondents use navigation in their vehicle. Initial screening 
limited survey participants to respondents older than 18 years of age, who are regularly 
driving, and use an Android smartphone for vehicle navigation. Questions involved the 
frequency of app usage on different road facilities, the trip durations of app usage on 
different road facilities, percent of trips that respondents follow the suggested route, and 
the primary reason they do not follow the suggested route. In addition to the data collected 
during the survey process, additional data was collected through an online portal described 
in Appendix C. However, most of the data collected through the online portal was screened 
out of the analysis because the datasets did not contain at least 85% of collected days with 
trips in the Atlanta area. 



The Impact of Smartphone Applications on Trip Routing  

  
24 

Specific criteria attempted to limit the study to only participants meeting the criteria: 
participants must be above 18, regularly drive a car, primarily use an Android phone for 
vehicle navigation, have “Google location services” turned on, and have a primary residence 
in Metro Atlanta, GA. The survey collected 27 responses with a variety of quality in data 
downloads as seen in Table 1-2. 23 of the 27 responses contained data for over half of the 
days requested. Days without data may be due to study participants not using an Android 
smartphone for the entire period or study participants turning off location history 
collection. Location services are turned off when an Android phone is not on but not when 
the phone is in Flight Mode. The average number of trips downloaded per respondent was 
542 trips with a minimum and maximum of 1 and 982 trips, respectively. A full table for 
frequency for each of the 27 downloads can be found in Appendix E.  

Table 1-2: GLH Data Quality Frequency Table 

Type Count 

Percent of Data 
Survey 
Respondents 

Count of Days with available data (N=27) 

1 - 30 Days 2 7% 
31 - 60 Days 2 7% 
61 - 90 Days 6 22% 
91 - 120 15 56% 
121 + 2 7% 
Count of Trips (N=27)  
1- 150 2 7% 
151 - 300 3 11% 
301 - 450 3 11% 
451 - 600 6 22% 
601 - 750 7 26% 
751 + 6 22% 
Percent of Active User Driving Trips in Atlanta (N=27) 

0 - 20 % 2 7% 
21 - 40 % 2 7% 
41 - 60 % 2 7% 
61 - 80 % 3 11% 
81 - 90 % 7 25% 
91 - 100 %  11 39% 

 

Each complete data download resulted in a KML file for each day containing trips and stops 
with attributes including activity type e.g., driving, walking, biking, timestamp, latitude and 
longitude of location points, and distance. To process the large amount of data for each 
individual, a python script pulled out the latitude and longitude of location points and 
activity point for each trip on each day. All trip files were merged into a csv for each 
respondent. Although GLH Timeline provides routes for each trip, extracting the location 
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data points instead of the trip line allowed for finer analysis of the data. Data was refined to 
points in the area of interest by clipping points to the Atlanta Metro area (boundary of 
Atlanta Metro area determined as per the Atlanta Regional Commission definition). Points 
were further refined to only include points associated with a driving type trip. The nearest 
roadway facility classification, as defined by the Georgia Department of Transportation 
(GDOT) road inventory, was associated with each data point (GDOT 2019). Each trip can be 
associated with multiple roadway classifications. Using ARCGIS data management tools, line 
features were created from temporally consecutive points of the same trip. By using the 
location data points to build trips instead of evaluating the provided trip line, the distance 
between points was calculated and used to estimate trips as active or passive phone 
engagement. Navigation app usage associated with GPS signal contains a higher accuracy 
and additional frequent location points (Rodriguez et al. 2018). 

1.3.5 Survey Results  
From the sample of 694 interactions, there were roughly 237 usable survey responses and 
27 usable GLH data collections, after removing severely incomplete cases. Table 1-3 
presents the socio demographics of the pooled sample of survey respondents and matching 
GLH respondents compared with the 2017 Atlanta American Community Survey (ACS) data 
(United States Census Bureau 2017). The small chi-squared goodness of fit test values 
indicates a difference between the sociodemographic characteristics of survey and GHL 
data respondents as compared to the population. Survey participants tended to be higher 
educated and younger than the average study area population. This trend mirrors the 
characteristics of the sample population of smartphone owners (Pew Research Center 
2019). 

The detailed survey results can be found in Appendix D. Some of the important results are 
highlighted in the following sections.  

Table 1-3: Sociodemographic for Pooled Sample and ACS Population 

  Survey 
Responses 

% 
Respondents 
Answering 
Question* 

GLH 
Responses 

% of GLH 
Reponses’s 
Answering 
Questions  

% Population 
from ACS 

Gender  (N=232, Chi-squared 

goodness of fit P<0.95) 

(N=13, Chi-squared 

goodness of fit 

P<0.0001) 

 

Male 114 49.10% 9 69% 49.60% 

Female 118 50.90% 4 31% 50.40% 

Age  (N=235, Chi-squared 

goodness of fit P<0.001) 

   

18-24 28 11.90% 2 15% 22.20% 

25-34 66 28.10% 5 38% 19.50% 
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  Survey 
Responses 

% 
Respondents 
Answering 
Question* 

GLH 
Responses 

% of GLH 
Reponses’s 
Answering 
Questions  

% Population 
from ACS 

35-44 40 17.00% 3 23% 13.10% 

45-54 52 22.10% 2 15% 10.50% 

55-64 39 16.60% 1 8% 16.20% 

65-74 9 3.80% 0 0% 11.00% 

75+ 1 0.40% 0 0% 7.60% 

Highest Level of 

Education  

(N=234, Chi-squared 

goodness of fit P<0.001) 

(N=13, Chi-squared 

goodness of fit 

P<0.0001) 

 

From 9th grade to 
12th grade 

1 0.40% 0 0% 10.10% 

High school 
graduate 

7 3.00% 1 8% 19.20% 

Some college but 
no bachelor’s 
degree 

32 13.70% 2 15% 26.90% 

Bachelor’s degree 100 42.70% 6 46% 25.90% 

Graduate work or 
postgraduate 
degree 

94 40.20% 4 31% 17.90% 

Persons in 

Household  

(N=235, Chi-squared 

goodness of fit P<0.001) 

(N=13, Chi-squared 

goodness of fit 

P<0.0001) 

 

1 42 17.90% 3 23% 43.10% 

2 97 41.30% 6 46% 31.70% 

3 47 20.00% 3 23% 11.70% 

4+ 49 20.90% 1 8% 13.50% 

Persons in 

Household Under 

the Age of 18  

(N=235, Chi-squared 

goodness of fit P<0.1) 

(N=13, Chi-squared 

goodness of fit P<0.95) 

 

0 165 68.50% 10 77% 77.40% 

1 or more 70 29.00% 3 23% 22.60% 
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1.3.5.1 Usage of Different Navigation Apps 
The survey began by asking participants their situational behavior when they enter their 
car and use a device for vehicle navigation. With over 78% of participants stating their 
main device for navigation is a smartphone, as seen in Figure 1-4, this predominant 
result is similar to the national average (Pew Research Center 2016).  

 

Figure 1-4: Device Mainly Used for Navigation  

The type of smartphone used was recorded and used as a qualifier for location data 
collection. The sample of surveys collected was largely iPhone users, 67% as seen in 
Figure 1-5, which differs from the national proportion of smartphone operating systems, 
45% iPhone (Statista 2019).  

 

Figure 1-5: Type of Mobile Device of Sample 
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The distribution of the app used for navigation also differed from the national 
proportion. The proportion of Waze app users was 36%, which is larger than the 
proportion captured in a previous study, 11% (Graham 2018). This difference in app 
used for navigation might be explained by the location of the survey, urban Atlanta, 
because Waze is used more in large U.S. cities (Drivemode 2018). As seen in Figure 1-6, 
Google Maps is the most popular app used for directions and almost a third of 
smartphone users have more than one app for navigation. Although the typical app was 
recorded in the survey, the following questions were related to general navigation app 
usage. Comments made by respondents indicate that type of app usage may impact the 
travel behavior and should be researched further.  

 

Figure 1-6: App Used for Navigation (N=225) 

1.3.5.2 Usage on Various Types of Roadways 
The next set of questions were related to the frequency of road usage (i.e., daily, once a 
week, once a month, and several times a year) and roadway facility type (i.e., freeway, 
major road, and neighborhood road). Respondents were initially asked for the 
categorical frequency of usage on each type of road and then asked for the categorical 
frequency of usage with navigation apps on each type of road. These relative 
frequencies of road use with or without a navigation app are displayed in Figure 1-7 as 
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the percentage of respondents (n=185). A chi-squared test confirmed the difference 
between the frequency of typical road usage and frequency of road usage with 
navigation apps for each facility type; freeway χ2< 0.05, major roads χ2< 0.01, 
neighborhood roads χ2< 0.01. This result indicates that users do not use navigation apps 
uniformly. App users have distinct travel patterns and app usage preferences which may 
lead to the unequal distribution of road and navigation app usage.  

Figure 1-7 also indicates that not every trip is made with a navigation app. Across all 
types of roadways, the use of apps is less frequent than the actual use of the road. The 
closest daily road use with and without navigation app occurs on a freeway: 56% of 
respondents (r=103) indicated that they use a freeway daily and 41% of respondents 
(r=75) indicated that they use a freeway with a navigation app daily. This high app usage 
on freeways may be explained by the typical nature of freeway trips in combination with 
the types of trips that involve navigation apps. Freeways with high levels of congestion 
will see a high usage of routing apps as drivers try to avoid the congestion. The time 
spent on neighborhood streets saw the largest difference of app usage. Although 83% of 
respondents indicated a daily usage of neighborhood roads, only 39% of users indicated 
daily usage of neighborhood roads with a navigation app.  

 

Figure 1-7: Frequency of Road Usage With and Without Navigation apps 

Respondents were asked about the type of trips that typically involves navigation apps 
for directions. First time trips (78%) and infrequent trips (74%) are the two most 
common types of trips users use apps for directions, as seen in Figure 1-8 (n=143). 
Almost half of respondents did indicate that they use navigation apps for regular 
commute trips (46%). This finding has potential re-routing implications because drivers 
have a higher tendency to divert to alternate routes if they are more familiar with the 
suggested route (Khoo et al. 2016).  
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Figure 1-8: Type of Trip Used with Navigation Apps 

Respondents were asked to select the trip durations when they typically used navigation 
apps. Respondents (n=182) had the opportunity to select multiple trip duration ranges. 
Most trips using navigation apps are typically longer trips with durations of 16-30 
minutes (68%), 31- 60 minutes (70%), and 61+ minute (61%) as seen in Figure 1-9. 

 

Figure 1-9: Trip Duration of Typical Navigation App Use 
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rerouting. Although apps like Google Maps and Waze provide the fastest route as an 
option to users, they do not always select this optimal route at the start of the trip or 
switch to the most optimal route mid-trip.  

The questionnaire contained a series of questions to determine the rerouting potential 
of navigation apps. Most smartphone app users follow the suggested route for at least 
80 - 99% of trips (46%) and another 25% of users follow the suggested route for 100% of 
trips, as seen in Figure 1-10. 

  

Figure 1-10: Percentage of Trips where Users Follow the Suggested Route 

 

When users do not follow the suggested route, the primary reasons are because they 
prefer their typical route (42%), or they don’t trust the route (33%), as seen in Figure 1-
11. 

25%

46%

16%
9%

1% 2%
0

50

100

150

200

100% of
trips

80 - 99% of
trips

60 - 79% of
trips

40 - 59% of
trips

20 - 39% of
trips

1 - 19% or
trips

N
um

be
r o

f O
bs

er
va

tio
ns



The Impact of Smartphone Applications on Trip Routing  

  
32 

 

 

Figure 1-11: Reason for Not Following the Suggested Route 

To understand rerouting potential, users were asked about their preference for the 
times savings required to accept a route change. Over 60% of the respondents 
expressed that a 3-5-minute time savings would result in taking the recommended route 
(r=120, n = 194). A 6 to 10-minute time savings threshold would be required for 26% of 
the respondents to follow the suggest route (r=52, n=194), as seen in Figure 1-12. 

42%
33%

13%
8%

2% 2%
0

50

100

150

200

Prefer my
typical route

Do not trust 
the app’s route

App route is
too

complicated

Travel time
savings is not

enough

Other
(additional

stop, battery)

Avoiding
neighborhoods



The Impact of Smartphone Applications on Trip Routing  

  
33 

  

Figure 1-12: Threshold of Timesaving Required for Route Change 

1.3.5.4 Perceptions of Behavior Change Due to App Usage 
The final section of the questionnaire, before asking sociodemographic related 
questions, included two multi-part questions regarding their perception of how apps 
have changed usage on different facility types and how apps have changed user 
characteristics on neighborhood streets. Each respondent was asked to rate how 
navigation apps changed the general behavior on a Likert Scale, ranging from large 
decrease to large increase. They were then asked to rate how navigation apps have 
changed their personal behavior.  

When asked how navigation apps have changed the general road usage (time spent 
driving on each road type), around a quarter of the respondents perceived no change in 
general road usage for each facility type. More than a quarter of respondents perceived 
a small decrease in freeway usage as seen in Figure 1-13. Over half of the respondents 
perceived either a small increase or large increase in the time spent driving on 
neighborhood roads. The large variance in change of usage as seen in major roads, may 
be a result of an error in mode of data collection. During face-to-face interviews, 
respondents may provide inaccurate answers due to the on-the-spot nature of the 
question (Lavrakas 2018). The general and personal perception of change in road usage 
due to navigation apps was not significant across road types: p=0.43 for freeways, 
p=0.43 for major roads, and p =0.67 for neighborhood roads.  
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Figure 1-13: Change in Usage of Roadway Types from Navigation Apps 

There was a difference in general and personal perception for the changes observed in 
driver speed and alertness in neighborhood roads due to navigation apps. As seen in 
Figure 1-14, although individuals reported that navigation apps overall decreased the 
alertness of other drivers in neighborhood roads, they did not perceive the same 
decrease in their personal alertness. Similarly, individuals reported that navigation apps 
increase the driver speed of other drivers in neighborhood roads, they did not perceive 
an increase in their personal speed. This difference in general and personal perception 
may be due to the social desirability bias, which is the tendency of survey respondents 
to reply in a more favorable manner. Respondents may know they are less alert and 
drive fast in neighborhood streets due to navigation apps but do not want to reveal this 
undesirable behavior to the interviewer or they may believe they are better than the 
general population. Biases throughout the stated preference survey may result in an 
incorrect understanding on how navigation apps impact road usage. Revealed 
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preferences based in quantitative data paired with stated preferences is critical for 
understanding how navigation apps are used.  

 

Figure 1-14: Change in Neighborhood Streets Characteristics from Navigation Apps 

1.3.6 Location History Data Analysis Results  
Of the 27 acceptable quality GLH datasets collected, only 10 downloads contained at least 
85% of days with data from trips in the Atlanta area. Of these 10 downloads, there were 
less days with collected data for all road types in April 2017 than in March 2017, March 
2018, and April 2018, as seen in Figure 1-15. This decrease of commuters on the road may 
be explained by working from home to avoid the heavy congestion following the I-85 bridge 
collapse.  

 

Figure 1-15: Number of Days with relevant GLH Downloads from select surveys 

 

Although the number of driving trips in Atlanta decreased directly after the I-85 bridge 
collapse in April 2017, there was no change in proportion of the trips associated with the 
use of a navigation app, as seen in Figure 1-16. The fraction of driving trips with navigation 



The Impact of Smartphone Applications on Trip Routing  

  
36 

apps over the number of driving trips in Atlanta for each period stayed constant between 
March 2017 and April 2017. The trend of navigation app usage also did not appear to 
increase or decrease a year after the I-85 bridge collapse incident. 

 

Figure 1-16: Percentage of Trips with Navigation Apps in Metro Atlanta 

 

In addition to an aggregate analysis, a spatial analysis at the individual respondent level can 
reveal the cut-through behavior of individuals. Due to the limited number of usable 
responses, further research is necessary to reach a definitive conclusion. Using only the 17 
responses with more than 90 days of data available, 15,424 trips can be visually displayed 
over the four-month period to observe trends in routes over time. Figure 1-17 presents the 
location history of these 17 respondents within a 5-mile radius around the I-85 bridge 
collapse. Road facility types are given distinct colors to visually see the change in facility 
usage across the four months. The difference in routing caused by the bridge collapse and I-
85 closure, identified in the red circle, shows less freeway usage, blue colored, and a 
different pattern of major and neighborhood road usage in the April 2017 panel when 
compared with other monthly panels. The temporary re-route on major roads and 
neighborhood streets because of the I-85 bridge collapse can be seen in the increase of red 
and orange routes the upper right panel.  
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Figure 1-17: Location Data by Facility Classification of 5-Mile Radius Around I-85 Closure 

At a more disaggregate level, the GLH data provides a fine level of daily trips and location 
points. This high-quality data can be used to verify stated travel behavior and identify 
potential re-routing cut-throughs. Actual roadway usage and routing behavior compared to 
the travel behavior expressed by an individual provides insight into biases found in stated 
preference surveys. Thorough analysis of the typical use patterns between frequented 
origins and destinations found in GLH data reveals deviations of typical routes. This analysis 
must be completed on an individual basis because each individual’s daily route choices are 
unique depending on location of frequented origins and destinations.  

By comparing the actual travel behavior revealed in the location data and the stated travel 
behavior from the paired questionnaire, location history can confirm the described usage 
pattern. In this case, data downloads collected during the face-to-face portion of the survey 
were each paired with an associated questionnaire describing the stated travel behavior. As 
an example, one respondent stated that they use navigation apps for most trips; they 
reported use of navigation apps almost daily on all facility types in their regular commute, 
regular non-commute trips, infrequent trips, and first-time trips. This behavior was verified 
by comparing the stated relative frequency and the number of days with roadway usage. 
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The respondent indicated that they follow the suggested directions during 100% of trips and 
always accept rerouting suggestions. This behavior paired with typical route patterns 
identified a navigational app cut-through highlighted blue in Figure 1-18. GLH data provides 
a format that is easily visual and qualitative in analysis for possible deeper insights. 

 

Figure 1-18: Example of potential cut-through from individual GLH data 

 

GLH data has enormous potential to provide a powerful data source if a sufficiently large 
sample can be obtained. Recent environmental and health studies have started to use GLH 
because of the potential large sample and extended time periods of the detailed location 
(Ruktanonchai et al 2018, Yu et al. 2019). In the transportation field, there has only been 
limited investigation on the possibility of crowdsourcing users’ GLH data (Lawson 2017). 
Possible means for obtaining larger GLH datasets should be further explored to enable 
deeper and statistically robust analysis and reduce non-response/respondent bias. As the 
number of Android users, potential survey participants, rises, GLH may serve as a user-
friendly and low-cost alternative to study-specific deployment of GPS devices and 
specialized smartphone-based location tracking applications used in mobility studies today 
and allow for obtaining data over longer periods of time in a less intrusive fashion than 
actively instrumenting vehicles with dedicated GPS devices over short study periods.  

1.3.7 Conclusion  
This study investigated the stated and revealed influence of navigation apps on drivers’ 
route choice behavior. A stated behavior questionnaire based data and location history data 
were collected to understand the different types of routing apps used and distinct travel 
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behavior of users. Analyzing the impact of smartphone navigation apps was challenging 
because location history data is currently time-consuming to collect and inconvenient to 
aggregate at more than an individual level. The data collection process proved to be difficult 
because of a limited availability of willing and eligible people to provide the location data. 
Results from navigation app user surveys suffer from a small sample sizes and discrepancies 
of stated preference.   

Results from this study identified that a user’s perception of personal and general usage 
navigation apps isn’t the same, e.g. users perceived that navigation apps cause other drivers 
to travel with faster speeds on neighborhood streets but they did not perceive this increase 
in themselves. The use of navigation apps on each facility type is not uniform because of the 
many different types of apps users, ranging from those who use an app the moment they 
step foot in a car to those who only turn to navigation apps during extreme congestion or 
when they actively need navigation direction to travel to unfamiliar destinations. 

Although stated and revealed travel behavior can be used to gain a deeper insight, the exact 
impact of navigation apps on roadway facility types must be further studied to understand 
the impact of navigation apps on trip routing. GLH data has the potential to provide high-
resolution data that can be used to study route choice without a burden on the respondent. 
Although initial GLH results indicated a month of decreased travel and no change in 
navigation app usage after the I-85 bridge collapse, full conclusions cannot be drawn from 
the results of the analysis due to sample size limitations from the data collection process. 
Future studies with a larger sample size can harness the full potential of GLH data to help 
identify and understand cut-through and detour behavior at an individual level. Given the 
high rate of penetration of smartphones and the low respondent burden, anonymized data 
shared directly from Google and Waze could assist agencies to further evaluate the 
potential impact of navigation apps on roadway facility selection by drivers, congestion, and 
congestion management.  
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1.4 RECOMMENDATIONS  
Future studies with a larger sample size must be conducted to reach conclusive results about 
route choice and navigation apps. If data is collected through an online portal, a robust 
screening process should be conducted to ensure data collected is spatially relevant to the 
study purpose. In the original study, it is hypothesized that the limited advertisement of the 
study and the privacy concerns of potential respondents limited the amount of data available to 
the study. Partnerships with the app providers need to be explored in the future to facilitate 
the collection of larger datasets.  

Although time intensive, a higher rate of data collection success was achieved through in-
person surveys instead of an online portal. The use of a monetary incentive, quick and simple 
data upload process, explanation of data security procedures, friendly surveyors, support from 
local community and alumni, and the association with a well-respected research institute likely 
improved the understanding of the privacy protection protocols by the participants and 
addressed some of their privacy concerns and thereby increased the rate of participation.  

The dynamic and frequent updates to navigation apps may limit the scope and application of 
location history data to trip routing. As of May 2019, Google has released a new auto-delete 
control for location history and activity data in response to the public outcry regarding privacy 
rights (Monsees 2019). The impact of these new controls is unknown but may limit data 
collection for future research with GLH.  

Despite the limitations of the GLH data, this study is one of the first attempts at an objective 
quantification of the routing behavioral response of drivers to navigation apps and rerouting 
information.  This study provides a deeper understanding the nature of the impact of the 
dynamic congestion related information and routing information derived based on the 
congestion status on the routing behavior of drivers.  Such information has a potential for use 
in the determination of strategies for active travel demand management and operations as 
information becomes more ubiquitous with increasing uses of navigation apps and as we usher 
in the era of connected and autonomous vehicles. 
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2.1 INTRODUCTION 
The provision of information to travelers about changing traffic conditions including travel time, 
incidents, and potentially other information is an important component of active transportation 
and demand management (ATDM), advanced traveler information systems (ATIS), and 
integrated corridor management (ICM). There are a number of platforms available for 
delivering traveler information including dynamic message signs (DMS), highway advisory radio 
(HAR), traveler information telephone services, web site services, private sector and public 
sector smartphone applications, social media, broadcast TV/radio, and in-vehicle infotainment 
systems (built-in and aftermarket). Traveler information systems are experiencing dynamic 
changes that are expected to accelerate in the future with the increasing use of smartphone 
and social media applications, expected increase in the market penetrations of connected 
vehicles, and the applications of the next generation of traveler information systems referred to 
as EnableATIS [1] [2].  An important aspect among these is the widespread use of smartphone 
traveler information applications, which have profoundly impacted the transportation system 
and the drivers’ behaviors.  In recent years, travelers have mainly utilized private sector 
applications such as Google Maps, Waze, Apple Map, HERE, and INRIX Apps. State departments 
have also developed public sector apps for use by the traveling public.  Smart phone 
applications have been effective in allowing the commuters to modify their trip choices before 
making the trip (pre-trip) and during the trip (en-route). 

The performance of various ATDM, ATIS, and ICM applications have been assessed based on 
real-world data combined in some cases with the use of Analysis, Modelling, and Simulation 
(AMS) techniques [3].  An important parameter in the assessment is the estimation of the 
diversion rates of travelers under different traffic and incident conditions, the diversion routes 
used by the diverted traffic, and the impacts on the diversion routes. Realistic estimates of 
these parameters are also needed in order to calibrate simulation and dynamic traffic 
assignment models such that they can be used to predict changes in the diversion with system 
improvements under different scenarios. 

It is expected that the diversion rate depends on factors such as the incident attributes 
including the incident duration, the number of blocked lanes, and the time and location of the 
incident, etc. The diversion rate also depends on other factors such as the expected impacts of 
the incident on system performance, the quality of the provided traveler information, the 
availability of alternative route capacity, as well as driver behaviors. The diversion rates are 
expected to be constrained by the capacities of the freeway off-ramps and the signals that are 
close to these ramps. 

Most studies on traveler information systems have used stated preference and revealed 
preference surveys. Revealed preference surveys are preferred since it has been reported that 
the results from stated preference surveys overestimate the diversion rates.  Another potential 
option to estimate or at least confirm the diversion rate and routes is to examine infrastructure 
sensor measurements and probe vehicle measurements.  The Southeast Florida study portion 
of this project described in this chapter focuses on the use of two sources of data to assess 
performance: 1) On-line and face-to-face revealed preference surveys of travelers residing in 
Broward county, Florida.  Overall, 246 people over 18 years’ old participated in this survey, and 
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2) Freeway mainliner detector data that is used to estimate and predict the diversion utilizing a 
method developed in this study.  The results from the analyses based on the two sources of 
data are then compared.   

2.2 ESTIMATION OF DIVERSION IN PREVIOUS STUDIES 
Although there has been research on the subject of diversion rate estimation in the past two 
decades, there is still not a sufficient amount of information about the route diversion under 
various operating conditions. Several researchers have used the stated preference approach to 
determine the percentages of travelers changing trip decisions in response to information 
disseminated by ATIS technologies [4]. Based on this type of surveys, studies concluded that the 
disseminated information can result in up to 60% to 70% of freeway traffic exiting the freeway 
ahead of an incident location [5] [6] [7] [8]. Peeta et al. (2000) investigated the impacts of DMS 
information content and other relevant factors on diversion rates using the stated preference 
method [9]. The results indicated that 53% of drivers stated that they will divert to an 
alternative route when the expected delay on the current route exceeds 10 minutes. On the 
basis of a stated preference survey, Khattak et al. (1993) found that 42.9% of respondents 
would definitely take alternative routes under jammed conditions [10]. Huchingson and Dudek 
(1979) used a linear relationship between diversion rate and posted incident delays on the 
DMS, with zero diversion for zero delay due to incident and 95% diversion for a one-hour delay 
[11]. Al-Deek et al. (2009) developed a logit model to estimate diversion behavior when 
traveling on Central Florida toll roads as a function of travel time, delay, information source, 
network familiarity, and certain trip characteristics [12]. Kattan et al. (2010) developed a model 
to estimate the diversion based on driver’s socio-economic characteristics, trip purpose, trip 
time and length, access to en-route traveler information and the users’ level of satisfaction with 
the information. The model estimated up to 63.3% of travelers will divert to an alternate route 
[13]. 

It has been reported based on revealed preference survey results and traffic measurements 
that the actual diversions are lower than those estimated based on stated preference surveys.  
However, information regarding the actual diversions due to traveler information remains 
limited.  Several European field studies have found that diversion rates due to DMS messages 
range between 27% and 44% [14]. Chatterjee and MacDonald (2004) conducted an extensive 
survey in six European countries to examine the impact of DMS on traffic diversion and found 
with the driver questionnaire results that the diversion rates are zero to 7% for incident 
messages and zero to 35% with route guidance information [15]. An Enterprise Pooled Fund 
Study [16] found an increase in diversion rate that ranges from 0% to 12% due to DMS. A study 
in Maryland [17] found that the diversion rate ranges between 5% and 18% based on Bluetooth 
detector data. Foo and Abdulhai estimated an average diversion rate of 5.55% with the 
provision of DMS on Highway 401 in Toronto, Ontario, Canada based on traffic detector data 
[18]. Hadi. et al. [19] found that the diversion rate ranges from about 8% for one out of five 
lane blockages to about 25% when four out of the five lanes were blocked. 

Researchers estimated the diversion rate using the instantaneous inflow and outflow volumes 
during the incident [21] [22]. Abdel-Aty and Abdalla used the Maximum Likelihood Estimation 
(MLE) and Generalized Estimating Equations (GEE) framework using travel simulator data to 
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estimate the diversion rate based on pre-trip and en-route decisions with or without advice to 
divert and found the percentage of diversion to be 60-80%. [23].  Xiong, et al. used stated-
preference driving simulator data to investigate diversion behavior based on naïve Bayes rules 
and estimated a diversion percentage average of 5.2% [24]. 

It should be mentioned that due to the rapid changes to traveler information systems, including 
the wider utilization of private sector smartphone apps and the advancement in public agency 
systems when reviewing past studies on the subject, more weights should be given to more 
recent studies. 

An important consideration that has not been sufficiently investigated, is the capacity of the 
exits from the freeway ahead of the incident and the capacity of alternative routes on the 
diversion. The anticipated congestion of the alternative routes discourages drivers from 
diverting [25]. This needs to be further investigated, particularly as agencies start deploying ICM 
strategies.  

The above review indicates that there is wide variety of studies using different techniques and 
the estimated diversion rates vary widely from 5% to 80%.  This wide variation is in at least in 
part due to the unavailability of the use of actual real-world observation of diversion during 
incidents that have varying impact on the travel time on the freeway facilities. This points to the 
need for the development of such a method, preferably based on limited amount of data, to 
support the agencies in their development and activation of operation plans in real-time 
operations. 

2.3 SENSOR DATA-BASED APPROACHES TO PREDICT DIVERSION  
The most direct method to estimate existing traffic diversion is to use traffic detector data 
combined with incident data to determine the change in volumes on incident days, compared 
to the average or median volumes for “normal” days with no incidents. This is facilitated by the 
increasing availability of traffic data on freeways and more recently on urban streets. However, 
the main challenge to this approach is that traffic detectors are not installed on freeway off-
ramps in most current deployments. Thus, the change in volumes on these ramps cannot be 
detected to estimate the diverted volumes. 

This section focuses on the development of a method to estimate the diversion due to incidents 
based on the freeway mainline detector data combined with incident data using a combination 
of clustering, cumulative volume analysis, and predictive data analytics. The purpose of 
clustering analysis is to find days with no incident that are similar to the incident day traffic 
patterns, in the time interval of the incident occurrence.  The contribution of this study is to 
develop a more accurate diversion rate calculation method when there are no detectors 
installed on the off ramps.  The method utilizes a combination of the cumulative input/output 
volume approach to estimate the diversion for each incident, unsupervised learning utilizing 
clustering for off-line categorization of traffic patterns, and supervised learning approaches for 
the prediction of the diversion rate based on incident attributes. The clustering analyses is used 
to increase the accuracy of the method by associating the traffic patterns during normal days 
with the traffic pattern during the incident day (before the incident occurrence). Three 
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supervised learning techniques are used and compared to predict the diversion rates due to the 
incident.   

The three utilized supervised learning techniques for prediction are linear regression (LR), 
multilayer perceptron (MLP), and support vector machine (SVM). LR is used as a base for the 
prediction model comparison since it is the most widely used statistical technique for prediction 
and the resulting model is easy to derive and understand.  For many problems, LR can perform 
well with a relatively small sample size.  However, it cannot fit complex nonlinear functions. 
MLP and SVM as regression techniques, commonly recommended for use, produce accurate 
prediction results for complex problems.  SVM has a high resistance to overfitting and can deal 
with high data dimensionality (large number of features) even when the sample size is small.  
The MLP model has powerful adaptive learning ability and is applicable to fitting non-linearly 
separable data and can also deal with high dimensionality.  A disadvantage of both the SVM and 
MLP is that the results from them are more difficult to interpret than the LR model.  

The results from applying the three techniques are compared in terms of the mean absolute 
errors of the predictions.  The developed models are based on data from detectors located on 
the facility, on which the incidents occur.  The increases in volume on the main alternate 
parallel freeway routes are also examined to further verify the model estimations. 

As stated above, the contribution of this study is to develop a method for diversion rate 
calculation.  The method can be used to derive models based on data from other locations 
when developing the operation plans for the locations. There is no claim that the models 
developed in this paper are fully transferable to all other locations, although they can be used 
to provide a general idea of the magnitude of diversion. The actual diversion rate is a function 
of many local conditions such as the availability of alternative route capacities, traveler’s 
behaviors in the region, and the degree of congestion in the network.  Thus, site specific models 
are recommended to be derived for each freeway facility and the method developed in this 
paper can be used for this purpose. 

2.3.1  Utilized Data 
The utilized data in this study are incident data, traffic detector data, and weather data for 
the I-95 corridor in South Florida from Palmetto Beach Boulevard (Location 1) to I-595 
(Location 6) in Broward County, Florida, in Figure 2-1. As shown in Figure 2-1, the area of 
the case study is an I-95 section in Broward County, Florida. I-95 corridor is a main freeway 
route in the subject corridor and two parallel freeways, Sawgrass and Turnpike are located 
alongside of this interstate route. Ramps connected to the arterials from the subjected 
corridor consists of one or two lanes. I-95 is a congested corridor with annual average daily 
traffic of 225000, where AADT of Sawgrass and Turnpike route is 72000 and 115000 
respectively (source: Florida Traffic Online - FDOT). 

The traffic data for the year 2017 was retrieved from the regional data warehouse, which is 
a part of the Regional Integrated Transportation Information System (RITIS). The data was 
collected for the period between 5:30 AM and 11:30 AM. The traffic data was matched and 
fused with weather and incident data for the southbound direction of the I-95 corridor in 
order to separate normal days and incident days. Rainy day data was excluded from the 
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analysis as the estimation was done for normal day conditions. Weather data was collected 
from the National Center for Environmental Information– National Oceanic and 
Atmospheric Administration (NOAA) website. The data was collected for the Pompano 
Beach Airpark weather station, which is within a 10-mile radius of the study corridor. The 
data set includes the hourly precipitation (in inches) for each 15 min observations. Incident 
data for the analysis horizon along the corridor was retrieved from the incident 
management database managed by Florida Department of Transportation (FDOT) District 4. 
The collected incident data is very detailed and includes several useful attributes for the 
analyses of this study including the start and end times, lane blockage duration, total 
incident clearance time, number of blocked lanes, severity, time stamps of emergency 
vehicle arrivals, number of vehicles involved in the incident, and so on. Overall, 139 
incidents were analyzed to determine the diversion rates during the period of the analysis. 

All three types of data (traffic, incident, and weather) were converted to the 15-minute 
resolution and assembled together for cluster analyses. Rainy days were filtered out and 
not considered in this study. Incident duration was converted into a categorical variable, 
utilizing a 15-minute increment in the categorization. For example, 0-minute to 15-minute 
incident durations were assigned to Category 1, 16-minute to 30-minute incident durations 
were assigned to Category 2 and so on. Also, the incident start time was converted into a 
categorical variable for every 15-minute time slice from 5:30 AM to 11:30 AM (from 1 to 25, 
Category 1 for 5:30 AM and Category 25 for 11:30 AM).  The incident locations were also 
categorized into six locations, each associated with one of the six detectors in Figure 2-1. 
The R package ‘Geosphere’ feature was used in this association. 
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Figure 2-1: Study Area 

2.3.2 Association of Incident Day with Normal Day Patterns 
The estimation of diversion requires the association of each incident day with normal (no-
incident) days that have traffic patterns that are as close as possible to the traffic pattern of 
the incident day before the occurrence of the incident. This will allow the estimation of the 
expected demands without the incident to be used as a base in the analysis. The diversion is 
estimated by subtracting the volume during each incident day from the average of the 
traffic volumes in the normal days that have similar traffic patterns. The association of 
patterns was accomplished by first classifying the days into four seasons; winter (December-
February), spring (March-May), summer (June-August) and fall (September-November). The 
separation of the data into seasons is location specific.  Studies have clearly shown that the 
traffic patterns in Florida, at which the case study is located, are greatly influenced by the 
season with the traffic flow rates in the winter and spring are higher than those in the 
summer season, with a large proportion of travelers in the winter and spring being older 
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people escaping the cold weather in the North [26]. The days within each season were then 
clustered further into patterns using clustering analysis and an association was made 
between the traffic pattern of each incident day with the cluster that has the most similarity 
to the incident day traffic pattern before the incident happens. 

For the clustering analysis mentioned above, the normal days (days with no incident and no 
rain) were clustered based on traffic detector data (volume and speed) using the K-means 
clustering.  One important aspect of clustering is to determine the number of clusters to use 
in the clustering. This study utilizes a method referred as the Elbow method [27]. The Elbow 
method is an empirical method that provides an objective approach to determine the 
optimal number of clusters.  The method requires minimal prior knowledge about the data 
set and the attributes of the data set. The "Elbow Method" allows clustering based on the 
optimal number of clusters that is determined based on the total within-cluster sum of 
square (WSS) for each number of clusters [26]. A graph is drawn between the total WSS and 
the number of clusters and the location of the bend in the plot is generally considered as an 
indicator of the appropriate number of clusters, as shown in Figure 2-2. From Figure 2-2, 
four clusters were selected for use in the analysis. The K-means clustering analysis with a 
total number of four clusters was then performed on each season traffic data for the 
normal days with no incidents and no rain for every half an hour. An example of the 
resulting clusters is shown in Figure 2-3. For each incident day, the traffic pattern 30 
minutes before the incident clusters were matched with the traffic patterns of the days 
within a cluster that is in the same season and weekday as the incident day. This matching 
allows the estimation of the traffic demands with no diversion to use as a base in the 
estimation of the diversion. 

 
Figure 2-2: Plot of Total Within-Cluster Sum of Square (WSS) Vs. Number of Clusters 
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Figure 2-3: Plot of the Volume vs. Speed from 7:00 AM to 7:30 AM Period in the Fall Season     

2.3.3 Estimation of Diversion Rate 
The diversion rates were then estimated utilizing the difference between the cumulative 
volume at the end of the queuing period between the incident day and the average 
cumulative volume of the normal days associated with the incident day, as explained in the 
previous section. As assumed when utilizing queuing theory to analyze incident mobility 
impacts, the cumulative demand in the incident day first drops due to the capacity 
constraint due to the incident (see the incident day plot in Figure 2-4). Once the incident is 
cleared, the traffic will start leaving at the maximum possible queue discharge rate until the 
queue is completely dissipated. At that point, the cumulative volume with and without the 
incident should be equal if there is no diversion. This means that if the patterns of the no-
incident days associated with the incident day can be assumed to represent the incident day 
pattern with no diversion, the plots of the cumulative volumes of the incident and no-
incident days should meet at this point, as shown in Figure 2-4 (a). On the other hand, if 
diversion of traffic occurs the two plots will not meet since some of the vehicles diverted 
during the incident impact period. In this case, there will be a gap between the normal day 
cumulative volume and incident day cumulative volume plots after the dissipation of queue, 
as shown in Figure 2-4 (b). This gap or difference of volume is used in this study as an 
estimation of the diverted traffic volume. The utilized equation for this estimation is as 
follows: 

Diversion Rate =  
Cumulative Vol.of No incident day−Cumulative Vol.  of  incident day 

Cumulative volume  of No incident day
                            (1) 
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Figure 2-4: Cumulative Volume Diagrams of Incident and No-incident Days (a) Without 
Diversion, (b) With Diversion 

2.3.3.1 Diversion Estimation Results: 
The diversion rates were estimated for the study corridor using the methodology 
discussed above. Table 2-1 shows the mean, median, and 95th percentile diversion rate 
and the diverted volumes for incidents first detected in the periods between 5:30 AM and 
7:00 AM , 7:00 AM  to 9:30 AM , and 9:30 and 11:30 AM . Table 2-1 shows that there is a 
general trend of increase in the diversion rate with the increase in the number of blocked 
lanes due to the incidents, except for the incidents with the two-lane blockage before 
7:00 AM , for which only 4 incidents are available for the analysis, which is insufficient 
sample size. The estimated 95% diversion rate for the three lane blockage incidents for 
the period before 7:00 AM  is 22%. This indicates that 20% to 25% can be used as an 
upper limit on the diversion (drivers willing to divert) when up to three lanes out of five 
lane incidents are blocked. If modelling is to be used in conjunction with real-world data, 
the DTA model can then be used determine what proportion of this group of drivers will 
actually divert depending on traffic conditions on the alternative routes and the subject 
freeway under different conditions. For the existing conditions, the diversion estimated by 
the DTA can be calibrated using the results of the diversion estimation, as the results 
presented in Table 2-1 and the models later developed in this paper show. 

An interesting observation from Table 2-1 is that the average diversion percentages are 
higher for the period before 7:00 AM than the period after 7:00 AM. Further examination 
of Table 2-1 indicates that the actual diverted volumes are about the same in these two 
periods but by dividing by higher volumes in the peak period after 7:00 AM, the resulting 
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diversion percentage is lower. This indicates a possible upper limit on the number of 
vehicles that can divert due to capacity constraints. The alternative routes, Florida 
Turnpike and Sawgrass Expressway, both of which are tolled facilities, have sufficient 
access capacity. However, there are limited capacities on the off-ramps upstream of the 
incident location and possibly the arterials leading to the two tolled facilities, particularly 
during the peak hour. This finding indicates that applying special signal timing plans that 
flush the traffic at the off-ramps and adjacent arterials have the potential to increase the 
diversion rate and thus improving the performance of the system. Capacity analysis of the 
off-ramp signals indicates that the two off-ramps that provide exits to the main 
connectors to the alternative routes are already operating at 0.8 to 0.9 volume to capacity 
ratios (v/c) in the peak period, indicating the limited amount of access capacity available 
for vehicles to exit the freeway to alternative routes. 

Table 2-1: Average Diversion Rate for Different Number of Lane Blockage 

Time of 
Day Incident Condition 

No. of 
Incident 
Examined 

Average 

Diversion Rate 
& Volume 

95th 
percentile 

Diversion 
Rate 

50th 
Percentile 

Diversion 
Rate 

Before 

7:00 AM 

One Lane blocked 20 5.92% (900) 15.46% 4.34% 

Two Lane blocked 4 4.24% (975) 8.23% 3.95% 

Three Lane blocked 15 9.93% (1258) 22.01% 8.77% 

After 

7:00 AM 

One Lane blocked 56 3.90% (822) 9.65% 2.65% 

Two Lane blocked 31 4.19% (1133) 10.12% 3.40% 

Three Lane blocked 8 5.47% (1368) 10.32% 4.62% 

2.3.4 Predictive Model Development 
As mentioned earlier, three data analytics techniques were used to develop models for 
predicting diversion rates utilizing a data set of the rates estimated, as described in the 
previous sections, and the associated incident attributes. The three techniques are linear 
regression (LR), multilayer perceptron (MLP), and support vector machine (SVM).  The 
results from applying the three techniques are then assessed, as described in the following 
subsections.  Parameters used to predict diversion rate are number of lane blockage, 
incident severity, incident location, time slice of incident occurrence. Incident severity is 
directly imported from incident data base, which is representation of lane blockage and 
incident duration conditions rated from 1 to 3. Severity is 1 if any lane blocked for less than 
30 minutes; severity is 2 when any lane blocked between 30 to 120 minutes and severity is 
3 if all lanes blocked for any period of time, or individual lanes blocked more than 120 
minutes [28]. Incident start time was converted into a categorical variable for every 15-
minute time slice from 5:30 AM to 11:30 AM (from 1 to 25, Category 1 for 5:30 AM and 
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Category 25 for 11.30 AM).  In linear regression model, independent variables can be 
continuous or discrete. If any independent variable is categorical, which may be coded in 
discrete numbers yet mean categories rather than numerical values. Thus, the time slices of 
incident occurrence are converted into discrete dummy variables, in this case 1 to 25. 
Incident locations are coded based on the distance of incident from the diversion location. 
Latitudes and longitudes of the incident location and freeway detector zone are used to 
estimate the distance thus the incident location parameter. Descriptive statistics of the 
parameters used to develop the prediction model is shown in Table 2-2.   

Table 2-2 Descriptive Statistics of Input Variables 

Independent Variables Variable Characteristics Frequency 

Lane Blockage 1 Lane Blockage 76 
2 Lane Blockage 35 
3 Lane Blockage 28 

Severity Level 1 107 
Level 2 27 
Level 3 5 

Incident Location Within 1.5 Miles of Detector Zone 26 
1.5 to 3 Miles from Detector Zone 4 
3 to 4.5 Miles from Detector Zone 45 
4.5 to 6 Miles of Detector Zone 42 
6 Miles to 7.5 Miles of Detector Zone 22 

Time Slice of Incident Occurrence Before 7.00 Am 32 
After 9.00 Am 107 

 

2.3.4.1 Linear Regression (LR) Analysis 
Multiple Linear Regression analysis was conducted utilizing the R software package to 
determine the relationship between the diversion rate (Y) as the dependent variable and 
Xi as explanatory variables that are expected to impact the diversion.  The multiple linear 
regression can be expressed as: 

Y = β1X1+β2X2+β3X3+……………+βnXn.                              (2) 
 
where, Y is the Response or dependent variable, X1, X2, X3……………. Xn are the Predictor or 
independent variables, and β1, β2, β3……. βn are the Regression coefficients for the 
predictor variables. 

The set of variables considered for possible inclusion in the regression model are the 
number of blocked lanes, incident severity (mainly related to the expected incident 
duration), incident location, and time slice of incident occurrence. Table 2-3 shows the 
relationship derived using regression. The adjusted coefficient of determination for 
multiple regression (Adjusted R squared) of the developed model is 0.6025. The Mean 
Absolute Error (MAE) of the predicted diversion (Y) compared to the actual Y is 3.20%. All 



The Impact of Smartphone Applications on Trip Routing  

  
56 

four variables considered for inclusion are significant at the 5% level, as shown in Table 2-
3. Additional tests of the model were conducted including the residual vs fitted plot and 
Normal QQ Plot. For the model shown in Table 2-3, the plot of the residual vs fitted values 
shows that the residuals spread horizontally without distinct non-linear patterns. The Q-Q 
plot shows that the residuals are normally distributed. It is interesting to see that the 
regression coefficient of the log of the time slice of incident occurrence is negative, which 
indicates the reduction in the percentage diversion as the operations enter the peak 
congested period. 

Table 2-3: Regression Analysis Results 

Variables Coefficient Pr(>|t|) 

Lane Blockage 1.7089**** 0.000392 

Incident Severity 2.2655*** 0.006277 

Incident Location 0.4242** 0.033404 

Loge (Time slice of Incident 
Occurrence) -2.6621** 0.010086 

Multiple R-squared:        0.614 

Adjusted R-squared:       0.6025 

p-value:                           2.2e-16 

Mean Absolute Error:      3.20% 

Significant codes: 0= ‘****’ 0.001= ‘***’ 0.01= ‘**’ 0.05= ‘*’ 

 

To check how the model fitted the data the Residual vs fitted plot, Normal QQ Plot and 
Standardized residuals vs fitted value can be useful tools. Plot of Residual vs fitted shows 
if the residuals have non-linear patterns. Figure 2-5 shows residuals are spread around the 
horizontal line without distinct patterns of non-linear relationships. 
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Figure 2-5: Residual vs Fitted Plot 

The Q-Q plot, or quantile-quantile plot, is a graphical tool to assess if residuals are 
normally distributed. From the figure 2-6, it can be stated that standardized residuals 
follow the straight line, which indicates the normal distribution of standardized residuals 
and the full model is good fit with the variables as residuals are lined well on the straight 
dashed line. 

 

Figure 2-6: Normal Q-Q Plot  
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2.3.4.2 Multilayer Perceptron (MLP) 
MLP is a feed forward deep neural network representing a nonlinear mapping between an 
input vector and an output vector [29]. MLP consists of an input layer to receive the 
signal, an output layer that provides the model prediction, and a number of hidden layers 
between the input and output layers [30]. It has more than one hidden layer with 
adaptive weights.  The intermediate hidden layers enable the perceptron ability to solve 
nonlinear problems by processing information received from the input nodes and pass the 
results of the processing to the output layer [31] [32] [33].  

The Python programming language with ‘Keras’ library was used to train and validate the 
MLP model. The input variables: lane blockage, incident severity, incident location, and 
time slice of incident occurrence were used to estimate the diversion rate. Three hidden 
layers were used in the model. The number of hidden layers and the number of neurons 
in each layer were determined through a trial-and-error process. The optimum number 
was selected for the lowest mean square error. Before feeding into the model, the input 
variables were converted using one-hot encoding. The dataset was randomly divided into 
train and test sets, where 80% of data was used for training the model, and the remaining 
20% was utilized to test the model.  Best on the test set, the model produced a mean 
absolute error in the diversion rate of 1.80%, compared with 3.20% with the linear 
regression model, a 43% improvement. For the entire dataset, the root mean square error 
(RMSE) value was estimated as 2.976. 

2.3.4.3 Support Vector Machine (SVM) 
SVM is a learning algorithm that uses a set of mathematical functions referred to as the 
kernel functions. The kernel functions are applied to solve a nonlinear problem by taking 
data as input and mapping the data to a high-dimension feature space by transforming it 
into the required form. Different SVM algorithms use different types of kernel functions. 
Examples include linear, nonlinear, polynomial, radial basis function (RBF), and sigmoid 
functions. [34] [35] [36] [37]. 

In this paper, a SVM model was developed using the same input and output variables 
used in MLP by applying the RBF as the kernel function. The MAE was found to be 1.95% 
diversion rate compared with 3.2% with linear regression model, which is a 39% 
improvement. Other types of Kernel functions were also tested but the RBF was found to 
produce the least MAE. 

2.3.5 Comparison of Model Results  
As described above, linear regression, MLP and SVM were used to develop models for the 
prediction of the diversion rates based on the incident attributes. As stated earlier, the LR 
model produced MAE of 3.20%. The MLP model produced the lowest MAE at 1.80%.  The 
MAE of the SVM model is very close to that of the MLP model at 1.95%. 

Figures 2-7 (a), (b) and (c) show how well these three models predicted the diversion rates 
based on the freeway incident characteristics. To generate these figures, the estimated 
diversion rates based on traffic detector data were arranged in ascending order and plotted 
as the smooth solid lines. The solid lines in the figures show that the lowest estimated 
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diversion rate was 0.14% and the highest diversion rate was 27.66% based on detector data. 
In the same figures, the corresponding model predicted diversion rates are plotted as 
scatter dots with Figure 2-7 (a), (b) and (c) showing the predicted diversion rates compared 
to the measured diversion rates from the LR, MLP and SVM models respectively. It is clear 
from these figures that the SVM and MLP have better prediction capability than LR. An 
interesting observation is that the estimates based on the MLP model followed the pattern 
of the measured diversion rate better than those based on the SVM model. On the other 
hand, the SVM model produced better fit at higher diversion rates. 
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Figure 2-7: Plot of Actual and Predicted Diversion Rates Using (a) Linear Regression (LR) Model, 
(b) Multilayer Perceptron (MLP) Model, (c) Support Vector Machine (SVM) Model 
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2.3.6 Model Verification 
Further verification of the performance of the models developed in this study was 
conducted by examining the predicted diversion rate for selected incidents and comparing 
these rates with those estimated based on detector data. Table 2-4 shows a comparison 
between the estimated rate of diversion from I-95 for eight individual incidents selected at 
random with different lane blockage numbers and incident severity levels based on the 
data, and the diversion rates predicted by the supervised learning models developed in this 
study. The model that produces the closest estimation to the diversion rate for each 
incident is highlighted in bold.  As can be seen from Table 2-4, the SVM and MLP clearly 
performs better than the LR.  For example, for one of the incidents, the LR predicted 2.42% 
diversion for an incident with estimated 10.54% diversion based on data.  The SVM and MLP 
models predicted 10.54% and 10.62% diversion, respectively, for this incident.  Table 2-4 
also illustrates the higher diversion for the incident that occurs before 7:00 AM. As stated 
earlier, this was attributed to the limited capacity of the off-ramps that prevent further 
diversion.   
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Table 2-4: Verification of the Estimation of the Diversion Rate Using the Develop Models 

Incident 
detection 
time 

Time Slice 
during Start 
of the 
incident 

Incident 
Severity 

Incident 
Location 

Number of 
Lane 
Blocked 

Diverted Volume Diversion Rate (%) from I-95 
 

From 
I-95 

To Saw-
grass 

To Turn-
pike 

Actual 
Rate 

Model Prediction 

LR SVM MLP 

7:45AM 11 1 1 1 499 413 157 1.85 1.63 0.87 1.96 

6:45AM 7 1 4 1 1138 980 427 3.06 3.42 6.20 3.54 

6:45AM 7 1 2.5 2 572 259 182 4.60 4.49 3.30 3.77 

5:30AM 2 2 5 3 991 453 539 13.89 10.98 12.34 13.69 

6:30AM 6 1 6 3 578 264 314 7.63 7.87 7.71 5.04 

6:30AM 6 1 5.5 3 740 601 NA 4.83 7.65 4.65 3.46 

6:45AM 7 3 5 3 1804 359 NA 13.88 11.79 16.70 11.58 

7:45AM 11 1 3 2 809 464 NA 2.84 4.18 2.77 2.61 

7:00AM 8 1 2 1 1871 218 NA 10.54 2.42 10.54 10.62 

5.30AM 2 1 6 3 649 1059 NA 15.46 9.14 12.34 13.69 

*NA= Sensor data not available for this specific day  
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2.3.7 Model Transferability Assessment 
Transferability of the developed models are further assessed for a test dataset generated 
for incidents in two other freeways in the same region, which are the Florida Turnpike and 
Sawgrass Expressway. Incident data, weather data, and traffic data were fused in the same 
manner described earlier in this paper. The test results for five separate incidents (three 
incidents on the Florida-Turnpike and two incidents on the Sawgrass Expressway) are shown 
in Table 2-5.  The results show that for this test data the SVM model shows the least error 
compared to the other two models, possibly reflecting its resistance to overfitting.  The LR 
model prediction is the least accurate, possibly indicating its inability to fit the diversion 
function as good as the other two models. 

Table 2-5: Model Transferability Assessment for Two Different Freeway Incidents 

Incident 
No. Freeways Actual Diversion Rate 

Model Prediction 

LR MLP SVM 

1 Florida Turnpike 3.09 2.80 4.77 4.30 

2 Florida Turnpike 10.96 7.15 13.62 7.69 

3 Florida Turnpike 6.84 2.57 8.94 5.54 

4 Sawgrass 9.08 10.13 10.5 10.24 

5 Sawgrass 10.26 5.13 8.2 10.22 

MAE 2.91 1.98 1.39 

 

2.4 SURVEY RESULTS AND ANALYSIS  
The results presented in Section 2.3 indicates that the average diversion rate estimated based 
on main street sensor data ranges between 3.90% and 9.93% and the corresponding 95th 
percentile diversion rates range between 8.23% and 22.01% depending on the number of 
blocked lanes and the time of the analysis. This section presents the analysis of the results 
obtained from two types of traveler information survey.  The conducted traveler information 
surveys are: 1) an on-line survey conducted utilizing the Qualtrics service, and 2) a face-to-face 
(in-person) survey conducted by the researchers of this study. The survey questionnaire is 
shown in Appendix B. Conducting the two types of survey in conjunction with utilizing sensor 
data to derive the diversion as discussed in the previous section allows an interesting 
comparison of the three methods of diversion rate estimation under various incident 
conditions.   

The online survey was distributed in coordination with Qualtrics to commuters residing in 
Broward County in southeast Florida. The in-person survey was conducted at major shopping 
centers and malls in the Broward county area. The same survey questionnaire was utilized in 
both surveys.  The questionnaire included two screening questions to either qualify or 
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disqualify respondents from taking the survey and 18 survey questions. The screening questions 
were used to eliminate all responses who were 18 years of age or younger and who do not 
regularly drive a car. The survey questions were designed not only to determine the likelihood 
of using traveler information/route guidance apps, but also to capture the traveler’s diversion 
behaviors during incidents. For the online survey, data were received from 315 respondents 
constituting a balanced sample from all of the Broward County’s major cities including Sunrise, 
Plantation, Coconut Creek, Hillsboro Pines, Lauderdale Lakes, and Davie.  For the in-person 
survey, two interviewers conducted the survey of commuters in Broward County area.   

The discussion of the results presented in this section is based on the 315 responses of the 
online survey and the 41 responses of the in-person survey. The survey questions requested 
data about the respondent’s gender and age. All responses were collected from people who 
regularly drive within the study area at least twice per week. The majority of the respondents 
who filled the in-person survey were male (61%) and 82.92% were in the 18 to 44-year age 
category. Only 14.63% of the respondents were in the 45 to 54-year age category and the 
remaining 2.45 % were above 55 years of age. Moreover, the majority of the respondents who 
filled the online survey were female (64%) and 68.78 % fell in the 18 to 44-years age category 
with the remaining above 45 years of age. 

Different questions were designed to test the public’s awareness and experience with Traveler 
Information Systems and other means of vehicle navigation. The survey identified to the 
participants several navigation techniques that are commonly used by drivers such as 
smartphone apps, DMS, in-vehicle navigation systems, etc.  The results from both surveys were 
quite similar regarding the methods used by people for vehicle navigation. Both surveys 
indicated that the use of smartphone apps currently dominate the traveler information system 
utilization.  The use of DMS was much lower than expected, possibly indicating that the 
respondents did not understand what is meant by DMS in the survey and this should be 
considered in future surveys. Figure 2-8 shows the percentage use of different traveler 
information methods.  Figure 2-9 shows that the Google Maps application is the most widely 
used among the smartphone applications. 

 
Figure 2-8: Utilization of Traveler Information Methods 
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Figure 2-9: Utilization of Smartphone Apps by Type 

 
In order to study the frequency of using the apps by road classification, commuters were asked 
to estimate their average use of the applications during driving on freeways, arterials, and local 
roads. Results from the online survey showed that around 40% of drivers use mapping 
applications almost every day on freeways and local roads, and 38% on major roads.  Results 
from the in-person surveys also show that 32%, 37%, and 25% of drivers use the apps on 
freeways, major roads, and neighborhood streets, respectively.  The details of the responses 
are shown in Figure 2-10. 

 
Figure 2-10: Frequency of Using Route Guidance Apps 

 

Trip types and lengths are expected to affect the use of navigation apps.  Commuters were 
asked to estimate their percentage use of navigation applications by trip type (Regular 
commute, Regular non-commute, Infrequent, and First time trips) and trip duration.   The 
results are shown in Table 2-6 and indicate that the apps are used for all types of trips. 
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Table 2-6: Percentage of Navigation Applications Use by Trip Type and Duration 

Trip Type/Trip duration Does 
not use 

1-5 
min. 

6-15 
min. 

16-30 
min. 

31-60 
min. 

61+ 
min. N/A 

In-person 
1 Regular commute trips 26% 14% 12% 26% 16% 7% 0% 
2 Regular non-commute trips 40% 14% 14% 5% 7% 14% 5% 
3 Infrequent trips (doctor, family) 18% 23% 14% 27% 9% 2% 7% 
4 First time trips 6% 6% 15% 19% 15% 36% 2% 
Online 
1 Regular commute trips 24% 12% 18% 20% 17% 9% 0% 
2 Regular non-commute trips 42% 12% 21% 15% 4% 5% 2% 
3 Infrequent trips (doctor, family) 16% 13% 21% 28% 13% 8% 2% 
4 First time trips 3% 12% 20% 29% 22% 11% 2% 

 
In order to estimate the extent of trip re-routing and diversion rates, the survey participants 
were asked about the percentage of times they diverted in the last three months when 
encountering incident conditions.  The results, shown in Figure 2-11, indicate that when 
considering both online survey and the in-person survey, the motorists were equally likely 
(about 20% of all the respondents) to divert 1-20%, 20-39%, and 40%-59% of the times.  The 
other categories of percentage diversion were less likely.  The analysis results show gender and 
age had no statistically significant correlation with the frequency of diversion. 

 

 
Figure 2-11: Diversion Rate Based on On-Line and In-Person Survey 
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Table 2-7: Diversion Rates Corresponding to Delay Time Minutes for 1-hour Trip 

 Answer In-person Online 
Percentage Count Percentage Count 

1 < 7 minutes for an hour trip 7.32% 3 13.65% 43 
2 7 to 12 minutes for an hour trip 26.83% 11 23.80% 75 
3 13 to 18 minutes for an hour trip 31.71% 13 24.44% 77 
4 19 to 24 minutes for an hour trip 24.39% 10 13.65% 43 
5 25 to 30 minutes for an hour trip 2.44% 1 7.93% 25 

6 More than 30 minutes for an hour 
trip 4.88% 2 6.66% 21 

7 Never divert 2.44% 1 9.52% 30 
8 N/A 0.00% 0 0.03% 1 
 Total 100% 41 100% 315 

 
The compliance rate of using the suggested routes by the apps is expected to be a function of 
the drivers’ familiarity with the alternate route. Researchers reported that drivers were more 
likely to divert and consider switching decisions when they were familiar with the new routes 
(Khattak et al. 1995). Accordingly, the surveys asked the users about their preferences and 
behavior in accepting route guidance. The results from both surveys were similar and showed 
that the majority of responses followed the suggested route by the applications (60% to 80% of 
the times). A notable result from this survey was that 19% to 32% of the responses did not 
follow the suggested route by the applications because the travel time savings was not enough 
to consider diverting. In addition, 8% to 32% of the app users did not always trust the new 
suggested routes. Some drivers did not follow the navigation applications when the app’s 
routes were too complicated or required a lot of maneuvering and to avoid neighborhoods. 

The surveys asked the users of the application whether the use of the apps changed the 
people’s utilization of different types of roads including freeways, major roads, and 
neighborhood streets (30 mph or less). The results shown in Table 2-8 show that there was an 
increase in the utilization of all three types of roads including neighborhood streets when 
diverting due to navigation app information provision.  
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Table 2-8: Impact of Roadway Classification Utilization of Navigation Applications 

# Roadway Type Large 
increase 

Small 
Increase 

Neither 
Increase nor 
Decrease 

Small 
Decrease 

Large 
Decrease 

In-person 
1 Freeways 43.90% 31.71% 14.63% 4.88% 4.88% 
2 Major Roads 32.50% 30.00% 17.50% 17.50% 2.50% 

3 Neighborhood streets 
(30 mph or less) 34.15% 17.07% 26.83% 12.20% 9.76% 

Online 
1 Freeways 41.52% 25.58% 25.58% 5.64% 1.66% 
2 Major Roads 37.37% 33.77% 20.98% 6.22% 1.64% 

3 Neighborhood streets 
(30 mph or less) 35.19% 23.35% 31.25% 8.55% 1.64% 

2.5 COMPARISON OF MODEL RESULTS AND SURVEY RESULTS 
This section provides a comparison of the diversion rate estimated based on sensor data in 
Section 2.3 to survey results in Section 2.4.  

2.5.1 Diversion Rate Based on Sensor Data 
Diversion rate for different delay level was calculated using the model developed in Section 
2.3. As discussed in Section 2.3.4, the rate of traffic diversion during freeway incidents is a 
function of the incident position, incident severity, time of day, and lane blockage. The 
developed regression model (from Section 2.3.4) is as follows: 

Diversion Rate = (1.7089× No. of Lane Blockage) + (2.2655 × Incident Severity) +
(0.4242 × Incident Location)– (2.6621×Loge (Time slice of Incident Occurrence)  

Besides the regression model, two machine learning-based models using MLP and SVM 
were developed to estimate the diversion rate during incidents. Since the MLP model 
produced the best result, the model was used to predict the diversion rate and compared 
the results with the in-person/online survey results.  The model predicted the actual 
diversion rate ranging from 1 to 20%. Figure 2-12 shows the distribution of the predicted 
diversion rate.  

 
Figure 2-12: Diversion Rate from Regression Model 
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For those same incidents, the delay for each incident is calculated using queuing theory as 
follows to estimate the diversion as a function of delay for better comparison with survey 
data. 

Individual Vehicle Delay (minutes/vehicle) =  60𝑡𝑟(𝜆−𝜇𝑟)

𝜆
 

where, 𝑡𝑟 is the incident duration (hour), which is calculated from the start and end time of 
the incident, λ is the traffic demand (vehicle/hour), which is estimated using traffic volume 
(five-minute resolution) provided by freeway detectors, and 𝜇𝑟 is the reduced capacity due 
to lane blockage (vehicle/hour) which is calculated using the following equation:  

Remaining capacity, 𝜇𝑟= Capacity adjustment factor*C (pc/hr.) 

Where, C is the total capacity of the freeway considering 1900 pc/hr/ln as suggested by the 
Highway Capacity Manual (HCM), the capacity adjustment factor is the reduction of capacity 
due to an incident, which is a function of the number of lane blockage.   Figure 2-13 shows 
the predicted model diversion rate as a function of incident delay. Figure 2-13 shows that 
the average diversion rate increases with the increase of delay.  

 

 
Figure 2-13: Diversion Rate (%) Vs. Individual Vehicle Delay 
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to these two questions were merged together and statistical analyses were performed to 
get the percentage of diversion at different levels of delay.   

For example, consider a survey response that shows someone stated that he/she considers 
diverting when the delay is more than 20% of their trip and he/she diverts 30% of the time 
in the last three months. Therefore, the probability of diversion for that person is zero when 
the delay is less than 20%. If the delay is more than 20%, then he/she considers diversion as 
an option and diverts 30% of the time based on other factors such as type of trip, time of 
day, weather etc. In such a case, the probability of diversion is 30% when the delay is more 
than 20%. Another example is someone stated that he/she diverts 100% of the time, and 
he/she considers the diversion as an option at 50% increase in delay.  This means that this 
driver always diverts when the delay is more than 50%. Considering this, the responses to 
Question 6 and Question 7 are combined to get the diversion rate at different delay levels. 
Figure 2-14 shows the plot of average diversion rate vs delay increase for the in-person 
survey, online survey and model prediction. The result shows that the in-person survey 
estimates the lowest diversion among the methods.  

 

 
Figure 2-14: Delay Increase vs. Average Diversion Rate 
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incident occurrence. As part of the study, two travelers revealed preference surveys (i.e., in-
person and online) were performed to compare the results with the sensor-based model. 
Both the surveys’ results suggest a diversion rate close to 40% with regularly occurring 
incidents. This diversion rate seems to be not unrealistic; in that area, it is significantly 
higher than what the field observations suggest. The study also developed a correlation 
between the increase in the delay to the diversion rate for all the methods. The in-person 
survey suggests that the diversion rate doesn’t vary with the increase of delay, while the 
opposite scenario is observed for the online survey and shows a similar trend to the findings 
of the sensor-based model. 

The study found evidence that the diversion is constrained by the capacity of the signals at 
of the off-ramps, indicating the need for special signal control plans during incidents to 
increase the capacity of the off-ramps and adjacent signals leading to the main parallel 
routes. Capacity analysis of the off-ramp signals indicates that the two off-ramps that 
provide exits to the main connectors to the alternative routes have a limited amount of 
access capacity available for vehicles to exit the freeway to alternative routes. 

Data analytic models were developed in the study, allowing the prediction of the diversion 
rate based on the incident severity, number of blocked lanes, time of the incident 
occurrence, and incident locations. Three different models were developed utilizing LR, 
SVM, and MLP.  Among the developed models, the MLP model appears to produce the best 
results.   The models developed in this paper can be used for the prediction of diversion rate 
based on incident characteristics.  

A limitation of this study is that the developed method estimates the overall diversion rate 
and not the diversion at each off-ramp.  Most transportation agencies in the United States 
do not install sensors on the off-ramps.  It is recommended that agencies start installing 
sensors at the off-ramps to allow a more detailed examination of the diversion.  

Based on the results from this section, it can be concluded that the use of detector data 
combined with traffic flow and statistical techniques is viable to estimate diversion. This will 
become even more important, as agencies increase their emphasis on performance-based 
planning, planning for operations, and operations of their systems. It is expected that the 
diversion models are site specific and depends on the available capacity and characteristics 
of the alternative routes.  The transferability of the models between locations and similar 
locations in different regions should be investigated in future studies. 
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3.1 INTRODUCTION 
Over the past decades, traffic congestion has resulted in greater amounts of required travel 
time than before. It is a sign of deteriorating quality-of-life in a community. As an inexpensive, 
cost-efficient, and energy and environment friendly transportation service, traffic management 
through an Intelligent Transportation System (ITS) is naturally gaining more popularity in 
reducing traffic congestion. Emergency evacuation, in response to both natural and man-made 
disasters, aims to move a large disaster affected population through a transportation network 
towards safer areas both quickly and efficiently. Evacuations that are caused by disastrous 
incidents generally involve a large number of evacuees that increase traffic congestion, and 
there are necessities of accurately collecting traveler information and developing effective 
traffic management strategies in reducing traffic congestion. 

3.1.1 Traffic Congestion and Decentralized Traveler Information 
According to the 2015 Urban Mobility Scorecard (Schrank et al. 2015), every auto commuter 
spent an average of extra 42 hours traveling in 471 urban areas in 2014, which is up from 18 
hours in 1982. From 2013 to 2014, 95 of America’s 100 largest metro areas saw increased 
traffic congestion, while from 2012 to 2013 only 61 cities experienced increases. In order to 
ensure timely arrivals for important trips, travelers had to allow 48 minutes to make a trip 
that takes 20 minutes in light traffic. The 2016 Urban Congestion Trends Report (FHWA 
2017) provides the current status of congestion and reliability in 52 of the largest 
metropolitan areas in the United States and highlights successful relevant operation 
strategies and performance management approaches implemented by State and local 
transportation agencies. It indicates that congestion has overall remained relatively flat, 
increasing by 3 minutes from 2015 to 2016. 

For two widely accepted types of traffic congestion of non-recurrent congestion and 
recurrent congestion, the Federal Highway Administration (FHWA) (2017) states that non-
recurrent congestion makes up 55%, including 25% due to traffic incidents, 15% due to bad 
weather, 10% due to work zones, and 5% due to special events. Recurrent congestion 
makes up 45%, including 40% due to bottlenecks, and 5% due to poor signal timing. Unlike 
non-recurring congestion, the sources of recurring congestion are more easily identified and 
can be addressed by working to develop proper signal timing and focusing on reducing 
bottlenecks during peak commuting hours. Reducing non-recurring congestion, especially 
under extreme weather, is more difficult. In order to successfully develop and deploy the 
traffic management strategy to reduce traffic congestion, two basic studies are necessary to 
be conducted: one is the traveler information collection and analysis, and the other is the 
trip route optimization modeling. Traveler information, as the basic information used for 
developing and deploying the traffic management strategy, is crucial to be collected 
accurately. There are two types of traveler information: the centralized traveler information 
and the decentralized traveler information. The typical deployment of centralized collection 
of traveler information for an ITS is to install vehicle sensors and loop detectors buried 
under pavement surfaces and connected through wired or wireless communications 
hardware/software to the Traffic Management Center (TMC). The disadvantage of this 
information collection method is that there are potential single point failures on the 



The Impact of Smartphone Applications on Trip Routing  

  
77 

roadway without embedded loop detectors. With the advancements in communications 
and computer technologies, traveler information such as travel time and travel speed can 
also be collected as decentralized data using on-board devices, such as smartphones, or 
probe vehicles. Collecting decentralized traveler information (Xu 2006) using smart devices, 
compared to collecting traditional centralized traveler information by sensors, could avoid 
potential single point failures that a TMC-based system might have. The decentralized 
traveler information is capable to cover roadways that do not have embedded loop 
detectors. Hence, this kind of information could well reflect the traveler trip and trajectory 
information, especially the recurrent traffic congestion on a road network. Decentralized 
traveler information can effective help determine the potential congestion locations where 
traffic management strategies are considered.  

3.1.2 Emergency Evacuation 
Evacuations caused by disastrous incidents generally involve a large number of evacuees, 
possibly from more than one community or even jurisdiction, who need to move away from 
the at-risk area as soon as possible. This requires intensive efforts by emergency managers, 
first responders, law enforcement officers, and transportation professionals to coordinate, 
guide, transport, and shelter the affected population (Zimmerman et al. 2007).  

In contrast to a widespread disaster that may result in a large-scale regional emergency 
evacuation, a smaller incident such as a hazardous material spill due to a derailed train 
usually affects a localized area, and only the population within the affected area needs to be 
evacuated (Murray-Tuite and Wolshon 2013; Li et al. 2015). A localized evacuation may also 
be needed for a large-scale emergency evacuation when evacuation priorities are placed on 
a population in a subarea due to more imminent vulnerability of the subarea than the rest 
of the region. In studying a localized evacuation using traffic assignment simulations, a 
traffic assignment program tends to model the trip of an evacuee (in a vehicle) who seeks to 
leave the origin point within the subarea for a safe destination point outside the subarea as 
a “shortest path”. The seeking of the “shortest path” in a trip route corresponds well to a 
driver’s behavior under a normal traffic operation condition (Yang and Zhou 2014; Zheng et 
al. 2015; Bu et al. 2016; Wang et al. 2016). However, a reconsideration of the evacuation 
problem would reveal that the most effective strategy of evacuating a large number of 
people (in the format of vehicles hereafter) under a subarea emergency evacuation 
situation would be a 2-stage process: 1) first move all the evacuees out of the subarea 
(frequently to a point on the boundary of the subarea) in the least amount of total time, 
and 2) then, starting from the boundary of the subarea, the evacuees continue their trips to 
their destinations via their respective shortest paths. Intuitively, if every evacuee 
individually seeks the shortest path to leave the subarea for a safe destination, the 
possibility of having conflicts between traffic movements of these “shortest” trip paths 
would be high considering the tremendous number of evacuation trips generated after an 
evacuation order (assuming individual response time toward the evacuation is different). 
These increased conflicts of traffic movements and trip paths can cause widespread 
cascading traffic congestion within the subarea and impair the evacuation effort. Therefore, 
instead of seeking the individual shortest paths for the trip segments within the subarea, 
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evacuation traffic could be encouraged or guided to go through selected “gate” nodes/links 
in the subarea, on or near the subarea boundary with large access and throughput 
capacities to reduce the otherwise conflicts of traffic movements.  

This research will address how to use decentralized traveler information to determine 
potential congestion locations with highly unreliable travel times and identify weak points in 
urban network to be deployed with gating traffic control strategies to achieve the minimum 
travel cost in emergency evacuation. The research will contribute to using probe data in 
design of a traffic control or management strategy and reducing traffic congestion in 
emergency evacuation.  

3.2.   LITERATURE REVIEW 
Several studies investigated measures of travel time reliability (Carrion and Levinson 2012; 
Beaud et al. 2016; Xiao et al. 2017) on traffic congestion and effects of traffic management 
strategies on the performance of emergency evacuation. Congestion during emergency 
evacuation is the major concern because of the resulting traffic breakdown it may cause. In 
order to effectively extract previous research achievements, the literature review presented 
herein will focus on three major aspects: 1) travel time reliability analysis; 2) route choice 
behaviors in evacuation; and 3) optimization approach and traffic simulation. A review of the 
collected studies, classified by the major aspects considered, is presented in the following 
subsections. 

3.2.1 Travel Time Reliability Analysis 
In the past years, investigation of traffic congestion on roadways has received a lot of 
attention from researchers. Congestion measure can describe how well the system meets 
stated goals and targets, which can also explain the variations in user experiences with the 
system. Among the measures, some, including delay, risk of delay, mean speed, travel time 
and vehicle hours traveled (VHT), explain the duration of congestion experienced by users. 
Some measures, including the volume-to-capacity (V/C) ratio, usually expressed as a level-
of-service (LOS), describe how well the system is functioning at a given location. Some are 
spatial measures, such as queue length, queue density, and vehicle miles traveled (VMT). 
Some others are measures for travel time reliability and the number of stops (Lyman and 
Bertini 2008; Bertini 2005). 

Travel time reliability, as a measure of consistency or dependability in travel times at a given 
time, has been studied in the following categories: 1) statistical range measures, e.g., 
variance, standard deviation, and coefficient of variation (Lint et al. 2008; Sumalee and 
Zhong 2013; Zhang et al. 2016); k-th percentile, skewness and width statistic (Lint and 
Zuylen 2005; Guo et al. 2012; Sumalee et al. 2013; Jong and Bliemer 2015; Woodard et al. 
2017); and travel time index; 2) buffer time measures, e.g., planning time, planning time 
index, buffer index, failure/on-time performance, and frequency of congestion;  3) tardy 
trip, e.g., misery index; and 4) probabilistic measure (Lint et al. 2008). Some standard 
measures of travel time reliability are used by the FHWA based on travel time estimates 
directly calculated from continuous probe vehicle data, estimates from continuous point-
based, detector data, data collected in periodic special studies, or estimation created 

https://scholar.google.com/citations?user=UM_E1iQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=KdSPZogAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=ZFdF3RwAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=u_DjNeAAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=buJMiZMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=buJMiZMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=YwOKCBEAAAAJ&hl=en&oi=sra
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through simulation (FHWA 2017). The measures include 95th percentile travel time, travel 
time index, buffer index, and planning time index (Lint et al 2005; Lyman and Bertini 2008). 
These indicators are mostly related to properties of the day-to-day travel time distribution 
on a corridor or segment, which is a result of day-to-day fluctuations in both traffic demand 
and supply characteristics.  

Lyman and Bertini (2008) studied 10 Portland freeway corridor buffer indices by segment 
level and corridor level, in which all freeway segments included in this analysis showed 
higher buffer indices in the PM peak than in the AM peak. It was because traffic volumes 
were generally higher in the PM peak or because the PM peak had experienced peak 
spreading to a greater degree than the AM peak. According to the study results, several 
corridors had lower buffer indices in the range of 50%, while several corridors had higher 
buffer indices. It was suggested that priority should be given to the freeway with higher 
buffer indices in one direction in the AM peak or in the PM peak to improve reliability 
ratings. Lint et al. (2008) also conducted a study, aiming to investigate the actual and 
acceptable travel time reliability on a typical long route for three days of the week over one 
year. The buffer time indices during weekdays indicated that travel time reliability dropped 
well below 70% during both morning and afternoon peak-hour periods. Buffer time index 
was also advanced using multi-state models by proposing skewed component distributions 
(Guo et al. 2012), providing superior model fitting for travel time during peak conditions, 
especially for the congested environment.  

Several studies investigated different travel time reliability indices to analyze travel time 
reliability. Higatani et al. (2009) studied planning time, planning time index, buffer time, and 
buffer time index for multi routes. They showed the average travel time profile for each 
hour of a day over one year, during morning and evening peaks. Peak hours of planning 
time and average travel time showed the busiest route, and the buffer index was used to 
prioritize corridors and roadway segments according to travel time reliability. Chen et al. 
(2018) used coefficient of variation and buffer time index to explore the day-of-week travel 
time variability patterns. The study showed that urban expressways, auxiliary roads of 
urban expressways, and major roads have regular and distinct morning and afternoon peaks 
on weekdays. They revealed the volatile travel time characteristics of each road type in 
urban network. 

3.2.2 Route Choice Behaviors in Evacuation 
The modeling and design of a more effective traffic operation plan for emergency 
evacuation has been rigorously investigated using traffic simulation programs (Urbina and 
Wolshon 2003; Qiao et al. 2009; Hardy 2010; Sadri et al. 2014; Yang and Zhou 2014) since 
early studies dealing with traffic management under emergency conditions. These studies 
shared some similarities in route choice behavior and traffic assignment procedures. 
Evacuation demand in terms of origin-destination (O-D) matrix was determined for each 
evacuation scenario and a Geographic Information System (GIS) based roadway network 
was available for a simulation program to assign traffic for each trip O-D pair. Generally, the 
result of the traffic assignment was a trip trajectory, which is a “shortest path” with a 
sequence of nodes and links connecting the origin to the destination. These studies 

https://scholar.google.com/citations?user=KdSPZogAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=KdSPZogAAAAJ&hl=en&oi=sra
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considered shortest-path traffic assignments for the whole routes of all evacuation trips 
even under a localized evacuation situation, in which a Protective Action Zone (PAZ) is 
normally determined for the incident affected area, and the evacuation of people out of the 
PAZ would take a higher priority than the trip segment in the area outside the PAZ. The 
priority in the evacuation trip assignments inside the subarea with an emergency could be 
achieved by using an optimized evacuation strategy in which evacuees would follow optimal 
routes to safe locations outside the affected zone and then select behaviorally realistic 
routes to their final destinations (Zheng et al. 2010). The destinations could initially be 
assigned to the exits of the affected area by assuming a super-node and ignoring the travel 
to the real destinations outside the affected area (Lu et al. 2014).   

Based on OD-demand pairs in the PAZ, route choice models such as traffic assignment and 
route guidance are commonly used as components in large network modeling, and these 
choice models generally consist of finding the least-cost paths (Bekhor et al. 2008; He and 
Peeta 2014). Household behavior is also the most important aspect of hurricane evacuation 
by which a number of vehicles are generated and entered in the evacuation transportation 
network, following the routing strategy based on the user equilibrium (Ho et al. 2007; 
Bekhor et al. 2008; Lim and Kim 2016; Ukkusuri et al. 2017).   

According to a panel survey (Yin et al. 2014) that focused on Hurricanes Ivan and Katrina, 
most evacuees selected the same type of accommodations in the consecutive evacuations, 
and the number of household vehicles used in the evacuations did not change. Also, in an 
emergency evacuation, evacuees often seek familiar routes instead of selecting the routes 
contributing to relief of the traffic congestion and decrease of travel cost (Lindell and Prater 
2007; Murray-Tuite et al. 2012). Meanwhile, as individual drivers all attempt to use shortest 
routes of their own, some or all of the road network links and intersections on the 
evacuation routes would become over utilized due to unresolved conflicts of traffic 
movements, which may cause traffic congestion and potential blocking along the routes in 
the evacuation zone (Pel et al. 2010).   

3.2.3 Optimization Approaches and Traffic Simulation 
Optimization modeling over highway networks using static traffic assignment (STA) or 
dynamic traffic assignment (DTA) was conducted in numerous studies in the past years. In 
an optimization model for evacuation network, the concept of one-destination evacuation 
(ODE) was introduced by Yuan et al. (2006) to achieve the optimal traffic flow destination 
assignment by using minimum travel cost. In the study, a linear programming model was 
constructed with constraints of link flow and OD demand. Based on static traffic 
assignment, a link-path incidence variable was used to determine if a link was part of a 
path. Traffic operations in networks were studied using optimization modeling for different 
evacuation performance parameters or measurements of effectiveness (MOEs) (such as 
total trip cost, total conflicting risk, evacuation time, evacuation exposure, and average v/c 
ratios along with static traffic assignments) and various traffic management strategies 
including contraflow and crossing elimination for evacuation planning (Yusoff et al. 2008; 
Yuan and Han 2010; Xie et al. 2010; Qian and Zhang 2012; Bu et al. 2016). Meng et al. 
(2008) formulated the optimal contraflow lane configuration problem as a bi-level 
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programming mode. In the model, the upper-level problem was a binary integer 
programming formulation aimed to minimize the total travel time of a study area, while the 
lower level problem was a microscopic traffic simulation model that simulated the dynamic 
reaction of the drivers resulting from a contraflow lane configuration scheme. Constraints 
of the sequence and direction of reversal were considered in the model.  

Optimization methods have been widely used in network modeling for recurring congestion 
problems as well. In a recent study, Yang and Zhou (2014) constructed an integer 
programming model to find priori least expected time paths. The non-anticipativity 
constraint associated with the priori path in a time-dependent and stochastic network was 
considered in the model, and a number of reformulations were proposed to establish linear 
inequalities that can be easily dualized by a Lagrangian relaxation solution approach. Later, 
a time-dependent network flow programming model was proposed to maximize the 
accessibility of travelers. In the model, constrains of space-time flow balance, construction 
budget and coupling constraints between space-time arcs and physical links were 
introduced (Tong et al. 2015). A nonlinear programming model was formulated to describe 
the route choice behavior of the perfect information (PI) and expected travel time (ETT) 
user classes under stochastic day-dependent travel time (Li et al. 2017). In the model, 
constraints of path-link flow balance, path-link cost connection, expected path disutility, 
and least disutility were considered to minimize the gap between the current iteration 
solution and the ideal solution. In these studies, traffic simulations were frequently used for 
verification of optimization modeling on small road networks. In addition, traffic simulations 
were specifically introduced by the researchers to seek traffic detail and resolution in 
different levels using macroscopic, mesoscopic, or microscopic approaches. 

In order to develop traffic simulation-based models, a platform was developed by Zhou et 
al. to provide a robust framework for demand modeling and network analysis, which 
addressed emerging Intelligent Transportation System (ITS) and demand management 
technologies. The platform was latter developed as a theoretically rigorous and 
computationally efficient traffic network modeling tool, DTALite (Zhou and Taylor 2014; 
Zhou 2016), based on mesoscopic DTA procedure and queue-based traffic flow simulation 
models. The optimization modeling of traffic flows was introduced in this study, which was 
on a theoretically small-scale evacuation network, under a proposed gating control strategy 
along with a static traffic assignment algorithm and the verification of the optimization 
model using traffic simulations for a realistic highway network.  

The aforementioned study results have well suggested the advantage of aggregate 
optimization of traffic assignments and route selections over individual “shortest paths” for 
a localized emergency evacuation and the importance of traffic guidance (Xu et al. 2014; 
Kaviani et al. 2017) in such an evacuation operation. A subject that the researchers have not 
explored is the identification of traffic congestion at extreme events based on recurrent 
congestion, and the effectiveness of large-scale emergency evacuation using route choice 
and optimization modeling approaches. This study has been done to fill this gap.   
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3.3. DATA DESCRIPTION 

3.3.1 Probe Data 
Historical probe data with travel time on segment by one minute of highways and arterial 
roads at Memphis Metropolitan area from October 1, 2016 to October 1, 2017, and 
corresponding road network data were acquired from INRIX. Table 3-1 describes the raw 
data information, and Table 3-2 is the list of variables and attributes used in this study. 

 
Table 3-1: Raw Data Information 

Number Data Description 

1 

Vehicle probe data 

Date: Oct 1, 2016-Oct 1, 2017 
Time interval: 1 minute 
Number of data file: 85 
Number of metadata file: 85 
File format: CSV 
Data size: 334 GB 

2 Road network data BEST12 

 

Table 3-2: List of Variables and Attributes 

Number Variable Type Length Format Informat 
1 Date Time Numeric 8 YYMMDD10 YYMMDD10 
2 Segment ID Numeric 8 BEST12 BEST32 
3 Travel Time (minutes) Numeric 8 BEST12 BEST32 
4 Speed (miles/hour) Numeric 8 BEST12 BEST32 

 

For the raw data, there are two major types, vehicle probe data and road network data. For 
the vehicle probe data, there are a total of 170 files including 85 data files and 85 metadata 
files. Each file is stored as .csv format. The data size is 334 GB. For the road network data, 
there are 5830 segments. The data are stored as .shp format and data size is 33.5 MB.  The 
variables used for the analysis are Date Time, Segment ID, Travel Time, and Speed.  

3.3.2   Network in Memphis City 
The road network in Memphis studied in this project includes interstate highways, US 
highways, state highways, and arterial roads, as shown in Table 3-3 and Figure 3-1(a). As 
shown in Figure 3-1(b),  US highways, interstate highways, state highways, and arterial 
roads form the road network serving daily traffic in the city of Memphis and are accessed by 
residents and the driving public. 

 



The Impact of Smartphone Applications on Trip Routing  

  
83 

 

 

(a) Road network in city of Memphis, TN 

 

(b) Highway and arterial roads accessed by residents 
 

Figure 3-1: Description of road network in Memphis, TN. 
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Table 3-3: Major Highways and Arterial Roads in Memphis, TN 

Category Name 

US highway US-61, US-51, US-78, US-72 

Interstate highway I-55, I-40, I-240 

State highway TN-23, TN-177, TN-14, TN-204, TN-277 

Arterial road 

Democrat Road, Winchester Road, Airway Blvd, Poplar 

Avenue, North Parkway, Sam Cooper Blvd, Summer Avenue, 

Getwell Road, North Watkins Street, North Hollywood 

Street, Warford Street, Covington Pike 

 

3.4.  TRAVEL TIME ANALYSIS METHOD 
Travel time reliability measures, network representations in traffic assignment problem, 
simulation-based DTALite modeling, and mathematics-statistical models are adopted to identify 
potential gate locations in each subarea zone, to design and deploy gating control traffic 
management strategies, and to evaluate performance of the traffic management strategies. 

3.4.1 Travel Time Reliability Measures 
Travel time reliability measures used in this research include statistical range index and 
buffer time index (Lint et al. 2008), which are both for a given time-of-day (TOD) period. 

3.4.1.1 Statistical range measures 
Statistical range measures include standard deviation, coefficient of variation, and 
planning time. The standard deviation (STD) is a measure that is used to quantify the 
amount of variation or dispersion of a set of travel time data values. A low standard 
deviation indicates that the data points tend to be close to the mean (also called the 
expected value) of the set, while a high standard deviation indicates that the data points 
are spread out over a wider range of values. The population travel time variance is found 
by  
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                                                               (1) 

where: 

2  is the population variance.  

iTT  is the value of a travel time observation in the population. 

  is the population mean of travel time. 

https://en.wikipedia.org/wiki/Statistical_dispersion
https://en.wikipedia.org/wiki/Mean
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TT is the arithmetic mean of travel time of the data sample 

m  is the number of travel time observations or sample size of a sample of the population 

The travel time sample standard deviation is found by the formula 
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                                                                   (2)  

Coefficient of variation (COV), is a standardized measure of dispersion of a probability 
distribution or frequency distribution. It is often expressed as a percentage and defined as 
the ratio of the standard deviation to the mean. The coefficient of variation for a data 
sample is calculated by the formula: 

                                                      100%STD
COV = 


                                                                (3)                   

3.4.1.2 Buffer time measures 
Buffer time indicates the extra travel time a traveler should leave earlier than average 
time, to still arrive on time (in 95% percentile in this research) on a given TOD period. 
Buffer time measures used in this research are planning time (PT) and buffer index (BI).  

The planning time represents the total travel time expected or planned before trip starts 
with a given probability p , which is presented by  

                                                     1( )sPT p−=   

The 95% percentile value indicates the travel time on the worst day of the month, namely, 

95thTT , which is presented by  

                                           95thPT TT=                                                                                (4)  

Buffer time is the extra time to ensure on-time arrival to the destination, which is 
presented by  

                                              95thBT TT TT= −                                                                                (5) 

Buffer time index is the ratio of buffer time to the average travel time. It is a measure of 
the reliability of travel service, which can be viewed as the extra time ratio that travelers 
must add to their average commute to ensure an on-time arrival most of the time. It is 
calculated as follows: 

                                                  95th
mean

TT TT
BI

TT

−
=                                                                        (6)               

Where, 95thTT  is the 95th percentile travel time and TT is mean travel time. 

Travel time reliability measures are listed in Table 3-4.  
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Table 3-4: Summary of Travel time Reliability Measures for Given TOD Period 

Category Name Formula 

Statistical parameter 

Standard Deviation 
2

1
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Coefficient of Variation 

 
100%STD

COV = 


 

Buffer time 

Planning Time 95thPT TT=  

Buffer Time 
95thBT TT TT= −  

Buffer Time Index 95th
mean

TT TT
BI

TT

−
=  

 

3.4.2 Network Representations in Traffic Assignment Modeling 
Network representations in traffic assignment problem were introduced by Patriksson 
(2015). Let N be a set of nodes, corresponding to intersections and origin-destination zones, 
and A be directed links, corresponding to roads joining the intersections. We define the link 

flow variable as ijf , denoting the flow on the directed link ( , )i j , from node i to j. Further, let 

( )fk ijkf= denote the vector of flows for commodity. Assuming that demands are fixed, a 

feasible flow for commodity k is a vector fk satisfying  

                                    ,
i i

ijk jik ik

j W j V

f f d i N
 

− =    ,                                                      (7) 

                                                         0, ( , )ijkf i j A   ,                                                 (8) 

where 

           
, if  node is the origin of  commodity ,

, if  node is the destination of  commodity ,
0,   otherwise 

   

     
kdef

ik k

d i k

d d i k i N







= −                      (9) 

defines the demand vector dk for commodity k, and                  
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                { | ( , ) },
def

iW j i j A=                                                                                                (10) 

                 { | ( , ) }
def

iV j j i A=                                                                                                       (11) 

 

denotes, respectively, the set of links initiated and terminating at node i.  

 

With the node-link incidence matrix, for all O-D pairs, this could be compactly summarized 
as 

                                            , ,Af d    k k k C=                                                             (12) 

                                            0, ,f  k k C                                                                                  (13) 

and the total link flows are given by  

                                             ,
 

def

a ak

k C

f f a A


=                                                                     (14) 

3.4.3 Simulation-Based DTALite Modeling 
There are capacity and traffic flow models and queue-based traffic simulation models 
constructed for simulation-based DTALite modeling. 

3.4.3.1 Capacity and traffic flow models 
To capture queue formation, spillback, and dissipation through simplified traffic flow 
models, DTALite uses a number of traffic queuing models (e.g. point queue model, spatial 
queue, and Newell’s kinematic wave model) to track forward and backward wave 
propagations in its light-weight mesoscopic simulation engine. By doing so, traffic 
simulation in DTALite only requires a minimal set of traffic flow model parameters, such as 
outflow, inflow capacity, and storage capacity constraints, which are illustrated in Figure 
3-2. 

Inflow Capacity Outflow Capacity

Entrance List Exit Queue

Storage Capacity
 

Figure 3-2: Modeling traffic dynamics through essential constraints. 
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To capture the queue dynamics at typical bottlenecks (e.g. lane drop, merge, and weaving 
segments), the classical kinematic wave theory needs to be integrated with (1) flow 
conservation constraints, (2) traffic flow models that represent speed (or flow) of traffic as 
a function of density, and (3) partial differential equations. The flow conservation 
constraints typically follow a hyperbolic system of conservation laws, 

                                                                ( , )q k
g x t

x t

 
+ =

 
                                                         (15) 

where q and k are flow and density, respectively, and g(x, t) is the net vehicle generation 
rate. 

3.4.3.2 Queue-based traffic flow simulation model  
The simplest queue model implemented in DTALite is the point queue model. By imposing 
a single outflow capacity constraint on each link, a point queue model aims to capture the 
effect of traffic congestion at major bottlenecks. Using a point queue model in the first 
few iterations and then applying a simplified kinematic wave model in the later 
assignment process, one can avoid unrealistic and unnecessary gridlock in the initial 
assignment process, and further allow agents to learn travel times from previous 
iterations and switch routes to achieve a smooth and close-to-reality traffic pattern. Table 
3-5 lists the notations in the simple queue-based dynamic network loading (DNL) model.   

 

Table 3-5: Notations in Simple Queue-Based DNL Model 

Notation Description 

N Number of nodes in a corridor 

n Index of nodes, 1,2,...,n N=  

L  Number of links in a corridor 

l Index of links, 1,2,...,l L=  

t  Length of simulation interval 

x  Length of link 

,l tk  Prevailing density during the t-th time step on link l 

, l tq  Transfer flow rate from link l to link l+1during the t-th time interval 
[ , ]t t t+   

,
out

l tcap  Outflow capacity on link l during the t-th time interval [ , ]t t t+   

freev  Free-flow speed 

jamk  Jam density 
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The main steps in the computational procedure are 1) to calculate traffic flow ready to move 
from current link; 2) to calculate traffic flow from current link to its adjacent link; and 3) to 
update prevailing density at current link, which are described as follows: 

For time t = 0 to T 

     For link l = 0 to L 

                           Step 1: Calculate flow ready to move from link l: ,free l tv k  

                           Step 2: Calculate transfer flow ,l tq from link l to link l + 1 

, , ,min{ , }out

l t free l t l tq v k cap=   

                           Step 3: Update prevailing density at link l  

                                                    , 1 , 1, , /l t l t l t l tk k q q t x+ −= + −    

                           End for //link  

             End for //time 

3.5. TRAVEL TIME ANALYSIS RESULTS 

3.5.1 Zone Categorization  
The study area is divided into three analysis zones, Zone I, Zone II, and Zone III by subarea 
zone method, as shown in Figure 3-3.  

Memphis City Boundary

I

II

III

Analysis ZoneI II III
 

Figure 3-3: Analysis zones for travel time reliability analysis. 
(Basemap source: OpenStreetMap in ArcMap) 
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Table 3-6 lists the road information in each zone. There are nine major roads in Zone I, two 
interstate highways (I-55 and I-240), three US highways (US-61, US-51, and US-78), one 
state highway (TN-277), and three arterial roads (Airways Blvd, Democrat Road, and 
Winchester Road). Five major roads are studied in Zone II, one US highway (US-72), one 
state highway (TN-23), and three arterial roads (Sam Cooper Blvd, Summer Ave, and 
Getwell Road). As for Zone III, there are eight major roads, one US highway (US-51), one 
interstate highway (I-40), two state highways (TN-14 and TN-204), and four arterial roads 
(North Watkins St, North Hollywood St, Warford Street, and Covington Pike).  
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Table 3-6: Zone and Segment Information 

Zone Number Segment Number Road Name 

I 

1 I-55 Southbound 

2 I-55 Southbound 

3 US-61 Southbound 

4 US-51 Southbound 

5 I-240 Southbound 

6 TN-277 Southbound 

7 US-78 Southbound 

8 US-78 Southbound 

9 Airways Blvd Southbound 

10 Democrat Road Eastbound 

11 Winchester Road Eastbound 

II 

12 US-72 Eastbound 

13 TN-23 Eastbound 

14 Sam Cooper Blvd Eastbound 

15 Summer Ave Eastbound 

16 Summer Ave Northbound 

17 Getwell Road Southbound 

III 

18 US-51 Northbound 

19 US-51 Northbound 

20 I-40 Eastbound 

21 I-40 Eastbound 

22 North Watkins St Northbound 

23 North Watkins St Northbound 

24 North Hollywood St Northbound 

25 Warford Street Northbound 

26 TN-14 Eastbound 

27 TN-14 Northbound 

28 Covington Pike Northbound 

29 TN-204 Northbound 
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3.5.2 Segment Selection 
On each highway or arterial road, the outbound segment close to ring roads (I-40 and I-240) 
or city boundary is selected for the analysis. The geographical information of segment is 
shown in Table 3-6 and Figure 3-4. There are twenty-nine segments selected in the study 
area, eleven segments in Zone I, six segments in Zone II, and twelve segments in Zone III. 
The travel time analysis results are shown in the next subsection. 

 

 

Figure 3-4: Segments for travel time reliability analysis. 
(Base map source: OpenStreetMap in ArcMap) 

3.5.3 Travel Time Reliability Analysis Results 
Travel times on the highways were analyzed for each zone, including average travel time, 
coefficient of variation, planning time, and buffer time index.  

3.5.3.1 Average travel time for time of day 
Figures 3-5 to 3-7 show the average travel time for time-of-day for the highways and 
arterial roads in each zone. The figures show higher values between 6:00 AM and 9:00 AM  
or 12:00 PM  and 19:00 PM for the highways and arterial roads in each zone. Obviously, 
there are average travel time fluctuations in all day-time period on segments 4_US51 S, 
6_TN-277 S, 8_US78 S, and 10_Democrat Rd E in zone I, 12_US 72 E, segments 14_ Sam 
Cooper Blvd E, 15_ Summer Ave E, and 16_ Summer Ave N in zone II, segments 19_US51 
N, 23_ North Watkins St N, 26_ TN14 E, 28_Covington Pike N, and 29_ TN204 N in zone III. 
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(a) Highways 

 
(b) Arterial roads 

 
Figure 3-5: Average travel time analysis results for Zone I. 
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(a) Highways 

 

 
(b) Arterial roads 
 

Figure 3-6: Average travel time analysis results for Zone II. 
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(a) Highways 

 

 
(b) Arterial roads 

 
Figure 3-7: Average travel time analysis results for Zone III. 

3.5.3.2 Average travel time for time periods 
Figure 3-8 displays the average travel time analysis results during all day, AM and PM peak 
hours for all the roads in each of the three zones, respectively. Compared to the average 
travel time during all day, Figure 3-8(a) shows that the average travel time among 
segments 1_I-55 S, 2_I-55 S, 5_I-240 S, 7_US78 S, 8_US78 S, and 9_Airways Blvd S in zone 
I, during AM peak hours, increases from 0.77% to 24.1%. The average travel time among 
segments 4_US51 S, 6_TN 277 S, 9_Airways Blvd S, 10_Democrat Rd E, and 11_Winchester 
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Rd E, during PM peak hours, increases from 0.35% to 18.5%. It can be observed from 
Figure 3-8(b) that in Zone II, during AM peak hours, the average travel time increases by 
7.35% on segment 14_Sam Cooper Blvd E;  during PM peak hours, it increases from 1.04% 
to 12.89% among segments 12_US72 E, 13_TN-23 E, 15_Summer Ave E, 16_Summer Ave 
N, and 17_Getwell Rd S. Figure 3-8(c) displays that in Zone III, during AM peak hours, the 
average travel time increases from 0.19% to 5.3% among segments 18_US 51 N, 20_I-40 E, 
21_I-40 E, 22_North Watkins St N, 25_Warford St N, and 26_TN-14 E; during PM peak 
hours, it increases from 0.04% to 17.24% among segments 19_US 51 N, 21_I-40 E, 
23_North Watkins St N, 24_North Hollywood St N, 26_TN-14 E, 27_TN-14 N, 28_Covington 
Pike N, and 29_TN-204 N.  

 
(a) Zone I 
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(b) Zone II 

 

 
(c) Zone III 

 
Figure 3-8: Average travel time analysis results for different time periods. 

 
Table 3-7 checks the segments which have aforementioned positive increase value. As 
shown in the table, 45% of segments have higher average travel time during AM peak 
hours, while 55% of segments have higher average travel time during PM peak hours. 
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Table 3-7: Segment Check with Positive ATT Increase Values 

Zone 

Number 

Segment 

Number 

Average Travel Time 

AM peak PM peak 

I 

1 √  

2 √  

3   

4  √ 

5 √  

6  √ 

7 √  

8 √  

9 √ √ 

10  √ 

11  √ 

II 

12  √ 

13  √ 

14 √  

15  √ 

16  √ 

17  √ 

III 

18 √  

19  √ 

20 √  

21 √ √ 

22 √  

23  √ 

24  √ 

25 √  

26 √ √ 

27  √ 

28  √ 

29  √ 
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3.5.3.3 Coefficient of variation for time periods 
Table 3-8 checks the segments with COV values larger than 0.3. 34% of segments have 
high values during AM peak hours, while 45% of segments have higher values during PM 
peak hours. 

3.5.3.4 Planning time for time periods 
Figure 3-9 displays the planning time analysis results during all day, AM and PM peak 
hours for all the roads in each zone. Compared to the planning time during all day, Figure 
3-9(a) shows that in Zone I, the planning time among segments 1_I-55 S, 2_I-55 S, 5_I-240 
S, and 9_Airways Blvd S, during AM peak hours, increases from 0.68% to 15.58%; the 
planning time among segments 3_US61 S, 4_US51 S, 6_TN-277 S, 8_US78 S, 10_Democrat 
Rd E, and 11_Winchester Rd E, during PM peak hours, increases from 2.33% to 42.8%. In 
Zone II, Figure 3-9(b) shows that during AM peak hours, the planning time increases by 
1.68% on segment 14_Sam Cooper Blvd E; during PM peak hours, it increases from 
16.69% to 25.62% among segments 12_US72 E, 15_Summer Ave E, 16_Summer Ave N, 
and 17_Getwell Rd S.  

In Zone III, Figure 3-9(c) shows that during AM peak hours, the average travel time 
increases from 0.45% to 3.62% among segments 20_I-40 E, 22_North Watkins St N, and 
26_TN-14 E; during PM peak hours, it increases from 0.2% to 34.58% among segments 
18_US 51 N, 19_US 51 N, 21_I-40 E, 22_North Watkins St N, 23_North Watkins St N, 
24_North Hollywood St N, 25_Warford St N, 26_TN-14 E, 27_TN-14 N, 28_Covington Pike 
N, and 29_TN-204 N.  
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Table 3-8: Segment Check with Higher COV Values 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Zone Number Segment Number 
Coefficient of Variation 

AM peak PM peak 

 

 

 

 

 

I 

1 √  

2   

3 √  

4  √ 

5 √ √ 

6 √ √ 

7   

8 √  

9   

10  √ 

11 √ √ 

 

 

II 

12  √ 

13   

14 √  

15  √ 

16   

17 √ √ 

 

 

 

 

 

III 

18   

19   

20   

21 √ √ 

22   

23  √ 

24  √ 

25   

26   

27   

28  √ 

29 √ √ 
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(a) Zone I 

 

 
(b) Zone II 
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(c) Zone III 
 
Figure 3-9: Planning time analysis results for different time periods. 

 

Table 3-9 checks the segments which have aforementioned positive increase values in 
planning time. As shown in the table, 28% of the segments have higher planning time 
during AM peak hours, and 72% of the segments have higher average travel time during 
PM peak hours. 
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Table 3-9: Segment Check with Positive PT Increase Values 

 

  
Zone Number Segment Number 

Planning Time 

AM peak PM peak 

I 

1 √  

2 √  

3  √ 

4  √ 

5 √  

6  √ 

7   

8  √ 

9 √  

10  √ 

11  √ 

II 

12  √ 

13   

14 √  

15  √ 

16  √ 

17  √ 

III 

18  √ 

19  √ 

20 √  

21  √ 

22 √ √ 

23  √ 

24  √ 

25  √ 

26 √ √ 

27  √ 

28  √ 

29  √ 



The Impact of Smartphone Applications on Trip Routing  

  
104 

3.5.3.5 Buffer time index for time periods 
Figure 3-10 displays the buffer time index analysis results during all day, AM and PM peak 
hours, respectively, for all the roads in each zone.  

 

 

(a) Zone I 
 

 
 

(b) Zone II 
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(c) Zone III 

 

Figure 3-10: Buffer time index analysis results for different time periods. 

 

Among the measures in the analysis, buffer time index is the most effective travel time 
reliability measure that can be used to identify the congestion situation with low 
reliability, because it indicates the traffic situation by ratio value to mean, regardless of 
segment length. Therefore, the buffer time index analysis results for different time 
periods are used to identify traffic congestion locations, which are described in the next 
subsection.  

3.5.4 Traffic Congestion Identification  
In this study, we define that the threshold of average buffer time index is 0.55. If the 
average travel time index is larger than 0.55, the segment is checked as low travel reliability. 
Hence, the road segment on which average buffer time index is larger than 0.55 will be 
checked in order to identify the congestion locations. Based on the peak hour clearance 
definition in a congestion management process report by the Memphis urban area 
Metropolitan Planning Organization (2015), the average buffer time index analysis results, 
during AM peak hours (6:00 AM-9:00 AM) and PM peak hours (2:00 PM-6:00 PM), are 
calculated, checked, and listed in Table 3-10. According to the average buffer time index 
results in Table 3-10, there is one segment checked for AM peak hours and four segments 
checked for PM peak hours. Compared to AM peak hours, travel reliability is lower during 
PM peak hours. 
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Table 3-10: Average Buffer Time Index Calculation Results 

 

Zone 

Number 

Segment 

Number 

Average Buffer Time Index 

AM peak PM peak 

> 0 and < 0.55 ≥ 0.55 > 0 and < 0.55 ≥ 0.55 

I 

1 √  √  

2 √  √  

3 √  √  

4 √  √  

5 √  √  

6 √   √ 

7 √  √  

8  √ √  

9 √  √  

10 √   √ 

11 √  √  

II 

12 √  √  

13 √  √  

14 √  √  

15 √  √  

16 √  √  

17 √   √ 

III 

18 √  √  

19 √  √  

20 √  √  

21 √  √  

22 √  √  

23 √  √  

24 √  √  

25 √  √  

26 √  √  

27 √  √  

28 √  √  

29 √   √ 
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The segments on which the index values are larger than 0.55 during PM peak hours in each 
zone are described in Table 3-11. Segment 6 on TN-277 Southbound, segment 8 on US-78 
Southbound, and segment 10 on Democrat Road Eastbound in Zone I, segment 17 on 
Getwell Road Southbound in Zone II, and segment 29 on TN-204 Northbound in Zone III are 
identified as the potential traffic congestion locations. 

 

Table 3-11: Segment Information with Low Travel Reliability 

Zone Number Segment Number Road Name 

I 

6 TN-277 Southbound 

8 US-78 Southbound 

10 Democrat Road Eastbound 

II 17 Getwell Road Southbound 

III 29 TN-204 Northbound 
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3.6 TRAFFIC SIMULATION CASE STUDY 

3.6.1 Gating Control Strategy 
Assuming that the contra-flow strategy could be deployed for a node, in the proposed 
gating control strategy, a node on or near the boundary of the emergency affected subarea 
with multiple links having large link volume capacities may be selected and set as an 
evacuation egress gate. The node achieving the ‘gating’ strategy could be an arterial road 
intersection to a multi-lane national or state highway or an entrance ramp to an interstate 
highway. The ‘gating’ strategy is configured at selected gate nodes to use increased egress 
link capacities on the subarea boundary to improve evacuation performance. Since the trip 
demands entering the emergency affected subarea are much lower than the demands 
leaving the subarea, the egress link capacities at the gate nodes could be possibly increased 
through a contra-flow deployment. To avoid traffic congestion at the gate node, traffic 
guidance (sometimes with law enforcement) and information dissemination such as 
portable variable message signs (VMS) are needed upstream as a part of the gating control 
strategy.  

In modeling the network, the capacities of the incoming and outgoing links would be 
increased for a gate node, which is schematically described in Figures 3-11(a) and 3-11(b). 
The motivation lies in that the evacuation traffic would tend to use the links through the 
gate nodes to save travel cost because the traffic encounters less impedance using a link 
with a larger capacity.  

The crossing of different trip trajectories or trip movements at a node is counted as traffic 
conflicts. Traffic conflicts have the potential threat of causing trip delays and even crashes. 
To quantify the total number of traffic conflicts, the conflicting of traffic at an intermediate 
node is defined as the total product of vehicle trips that cross the node during the 
evacuation period.  Figures 3-11(c) and 3-11(d) show the traffic conflict situations without 
and with a gate node setting, respectively. During an emergency evacuation trip operation, 
the responsive evacuees would tend to respond to the incident by “escaping” (equivalently 
taking the shortest paths) from the origins in the affected area and “heading” to their 
destinations, which are out of the subarea. The evacuees can freely choose any route they 
believe to be the shortest path without knowing whether the route in the subarea is 
congested or not, and most likely the decision on the route is made in a hurry and/or based 
on previous experience. As a result, there are tremendous numbers of movement conflicts 
due to the many route crossings and, therefore, heavy congestion would be soon produced 
in multiple places in the subarea. These points of congestion will decrease the evacuation 
traffic mobility and eventually the performance of the emergency evacuation. 

 



The Impact of Smartphone Applications on Trip Routing  

  
109 

500 500

500 500

                      
1200 1200

1200 1200

 
 

(a) Link capacity without gating strategy  (b) Link capacity with gating strategy 

 

 Node on the PAZ boundary

 Traffic conflict point/intermediate node

Origin node Destination  node

      

 Node on PAZ boundary
 Traffic conflict point/intermediate node

Origin node Destination  node

Gate node

 
 

(c) Conflicts before using gating control                   (d) Conflicts after using gating control 
 

Figure 3-11: Schematic gating strategy in evacuation network. 

 

Figure 3-11(d) shows that gates with large or increased link volume capacities are selected 
and set among nodes on or near the boundary to help relieve the heavy congestion points 
in the subarea. Under the gating control strategy, evacuation trips are suggestively guided 
through designated gates to leave the subarea and then continue to their destinations 
through the rest of the network outside the subarea. Since the evacuation trips are guided 
to the designated gates based on traffic assignment method to minimize path crossings, 
unnecessary conflicts of traffic movements may be reduced. 

It is noticeable that the gate nodes must have increased link capacities to sustain the 
processing of the evacuation traffic, which means the gate nodes and the involved links 
must be well “managed” by transportation professionals. Meanwhile, the non-gate nodes 
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are still passable but may only allow limited traffic movements (with dashed lines in Figure 
3-11(d)). Since the gating control strategy aims to minimize travel cost inside the subarea 
and path crossings and conflicts of traffic movements, the cascading effect of congestion 
could be controlled and the evacuation performance could be improved. In order to 
demonstrate how a gating control strategy could possibly reduce the travel cost and traffic 
conflicting in evacuation traffic operations, optimization models were developed in a 
previous study and in Bu’s dissertation research to seek the modified shortest paths for 
trips inside the emergency affected subarea with the gating control strategy and through 
experimental tests to show the strategy’s effectiveness of reducing travel cost/time and 
traffic conflicting in the evacuation networks (Bu et al. 2016; Bu 2018). 

Capacity of a link/node, travel time of a link, congestion related travel cost of using a link, 
weights of links inside and outside the subarea, and conflicting status between links are 
considered in the modeling, and the objective function is to minimize the total travel cost 
and the total traffic conflicting for different trip demands in the evacuation network. In the 
model, the gating control strategy proposed in an evacuation network is described as 
follows: a node/link on the subarea boundary having a large volume capacity can be set as 
an evacuation egress gate, for example an arterial intersection, or an entrance to a freeway 
ramp.  

The capacity of a link could be increased by using traffic management strategies such as 
contra-flow control. In situations where inbound traffic demand is far less than outbound 
traffic demand (as in an evacuation operation), a reversal use of part or all of inbound traffic 
lanes would help increase the capacity of the outbound link. A contraflow is frequently 
deployed with variable message signs to disseminate information providing effective traffic 
guidance to users. These traffic management strategies could be deployed to achieve the 
gating strategy and improve evacuation performance. As well-designed contra-flow 
deployments, reversible lanes have been implemented in the US in which traffic may travel 
in either direction under certain conditions (Wolshon 2001; Wolshon and Lambert 2006), 
such as the reversible single lane tunnel shared between vehicular traffic and trains in 
Alaska, the center lanes opened for different bound traffic between different time periods 
considering daily rush hours in Arizona, California, Kentucky, Maryland, Nebraska, New 
York, Pennsylvania, and Texas, the center lanes reversed using overhead lane-use control 
signals in Georgia and Virginia, the reversible lanes allowing quick departure of special 
evacuees in Ohio, and the reversible lanes including a center turning lane at all times in 
Utah. In this study, we assumed that contra-flow operations could be deployed on the 
arterial corridors with a short notice of evacuation. 

3.6.2 Network Description 
Figure 3-12 shows the nodes and links of the road network to which the evacuation trips 
were assigned in the traffic simulations of the study. It includes Memphis city and Shelby 
County map of Tennessee. The road network of area with 24, 082 nodes, 67, 385 links, and 
1, 014 traffic analysis zones (TAZ) in Shelby County (788 TAZs in Memphis metropolitan 
area) was included in the traffic simulation of the gating control strategy for an evacuation 
operation study.  
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Figure 3-12: Road network in evacuation in Memphis, Shelby County. 

3.6.3 Scenario Design 

3.6.3.1 Potential gate nodes  
Considering the direction of an invading flood and potential traffic congestion, potential 
gate nodes were selected at the locations where the travel reliability is relatively low. The 
locations with low travel time reliability are analyzed and listed in Table 3-11 of Section 3-
5. Figure 3-13 shows the four locations with low travel reliability in each zone. Nodes 2 
and 3 are in zone I. Node 4 is in zone II, and node 5 is in zone III.  

I

II

III

2

3

4

5

1

 

Figure 3-13: Potential gate node locations. 
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For each potential gate node location, the geographical information, such as zone 
number, gate node number, road name, number of lanes, number of shoulders, and 
intersecting roads, is described in Table 3-12.  Both gate node 2 and gate node 3 are on 
highway US-78, whereas gate node 1 is considered as a potential gate location in order to 
reduce the traffic congestion on highway US-78. Therefore, there are five potential gate 
node locations in the simulation study. 

Table 3-12: Potential Gate Node Locations in Simulation Study 

Zone 
No. 

Gate 
Node    
No. 

Road 
Class 

Direction Number 
of Lanes 

Number 
of 
Shoulders 

Intersecting 
Road(s) 

 

I 

        1 Airways Blvd Southbound        6        0 TN-175 

2 TN-277 Southbound 6 0 US-78/TN-4 

3 Democrat Rd Eastbound 4 0 Tchulahoma 

Rd/US-78 

II 4 Getwell Rd Southbound 4 0 I-240 

III 5 TN-204 Northbound 4 0 I-40 

 

3.6.3.2 OD demands 
The evacuation demand was estimated at 490, 000 vehicles for the Memphis 
metropolitan area. Let all the trips entering the city be canceled, and retain the trips 
leaving the city. According to the Metropolitan Planning Organization (MPO) data, we 
assumed the background traffic demand (the trip demand in addition to the evacuation 
trips, reduced due to evacuation event) during PM peak hours to be 62,700 vehicles. Each 
traffic analysis zone was an origin node in the study area, and the destination nodes were 
located at the east boundary of the evacuation area, considering the evacuation routes 
need to be far away from the Mississippi River. There were 788 origin nodes and 21 
destination nodes. 

3.6.3.3 Simulation scenarios 
As shown in Table 3-13, to evaluate the performance of achieving a gate control strategy, 
different gating scenarios of traffic management were developed and simulated in the 
study at the potential gate nodes which are described in subsection 3.6.3.1. Scenarios of 
non-gate, single gate, double gates, triple gates, quadruple gates, and quintuple gates 
were tested by selecting the potential gate nodes in simulations.  

 

 



The Impact of Smartphone Applications on Trip Routing  

  
113 

 

 

Table 3-13: Description of Gating Control Scenarios for Simulation Study 

Scenario  Description 

No gate - No node was selected as a gate node in each zone. 

Each node was a non-gate node in each zone.  

Single 
Gate 

Gate 1 

Node 1 in zone I was selected as a gate node. 

Node 2 and node 3 in zone I, node 4 in zone II, and 
node 5 in zone III were non-gate nodes. 

Gate 2 

Node 2 in zone I was selected as a gate node.  

Node 1and node 3 in zone I, node 4 in zone II, and 
node 5 in zone III were non-gate nodes. 

Gate 3 

Node 3 in zone I was selected as a gate node.  

Node 1and node 2 in zone I, node 4 in zone II, and 
node 5 in zone III were non-gate nodes. 

Gate 4 

Node 4 in zone II was selected as a gate node.  

Node 1, node 2, and node 3 in zone I, and node 5 in 
zone III were non-gate nodes. 

Gate 5 

Node 5 in zone III was selected as a gate node.  

Node 1, node 2, and node 3 in zone I, and node 4 in 
zone II were non-gate nodes. 

Double 
Gates 

Gates 4_5 

Node 4 in zone II and node 5 in zone III were selected 
as gate nodes. 

Node 1, node 2 and node 3 in zone I were non-gate 
nodes. 

Triple 
Gates 

Gates 1_4_5 

Node 1 in zone I, node 4 in zone II, and node 5 in 
zone III were selected as gate nodes. 

Node 2 and node 3 in zone I were non-gate nodes. 
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Scenario  Description 

Gates 2_4_5 

Node 2 in zone I, node 4 in zone II, and node 5 in 
zone III were selected as gate nodes. 

Node 1 and node 3 in zone I were non-gate nodes. 

Gates 3_4_5 

Node 3 in zone I, node 4 in zone II, and node 5 in 
zone III were selected as gate nodes. 

Node 1 and node 2 in zone I were non-gate nodes. 

Quadruple 
Gates 

Gates 1_2_4_5 

Node 1 and node 2 in zone I, node 4 in zone II, and 
node 5 in zone III were selected as gate nodes. 

Node 3 in zone I was non-gate node. 

Gates 1_3_4_5 

Node 1 and node 3 in zone I, node 4 in zone II, and 
node 5 in zone III were selected as gate nodes. 

Node 2 in zone I was non-gate node. 

Gates 2_3_4_5 

Node 2 and node 3 in zone I, node 4 in zone II, and 
node 5 in zone III were selected as gate nodes. 

Node 1 in zone I was non-gate node. 

Quintuple 
Gates 

Gates 1_2_3_4_ 5 

Node 1, node 2 and node 3 in zone I, node 4 in zone 
II, and node 5 in zone III were selected as gate nodes. 

No node was selected as a non-gate node in each 
zone. 

 

In the scenarios of single gate, each node in each zone was selected as the gate node 
respectively. To test if the road class or the node geographical location impacts the 
performance, in the scenario of double gates, node 4 in zone I and node 5 in zone II were 
selected as gate nodes, and nodes 1, 2, and 3 in zone I were non-gate nodes. In the 
scenarios of triple gates, three scenarios with different node locations were simulated: (1) 
node 1 in zone I, node 4 in zone II, and node 5 in zone III were selected as gate nodes, and 
nodes 2 and 3 in zone I were non-gate nodes; (2) node 2 in zone I, node 4 in zone II, and 
node 5 in zone III were selected as gate nodes, and nodes 1 and 3 in zone I were non-gate 
nodes; (3) node 3 in zone I, node 4 in zone II, and node 5 in zone III were selected as gate 
nodes, and nodes 1 and 2 in zone I were non-gate nodes. In the scenario of quadruple 
gates, three scenarios with different node locations were simulated: (1) nodes 1 and 2 in 
zone I, node 4 in zone II, and node 5 in zone III were selected as gate nodes, and node 3 in 
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zone I was non-gate node; (2) nodes 1 and 3 in zone I, node 4 in zone II, and node 5 in 
zone III were selected as gate nodes, and node 2 in zone I was non-gate node; (3) nodes 2 
and 3 in zone I, node 4 in zone II, and node 5 in zone III were selected as gate nodes, and 
node 1 in zone I was non-gate node. In the scenario of quintuple gates, all the five nodes 
1, 2, 3, 4, and 5 were selected. As a bench mark, the scenario with non-gate control was 
also simulated. In this study, we assumed that contra-flow operations could be deployed 
on the highway or arterial corridors with a short notice of evacuation. 

In order to test the performance with different evacuation demand level, the evacuation 
demand was increased from 286,000 to 640,000 vehicles by three value ranges: (1) the 
evacuation demand was increased from 286,000 to 466,000 vehicles with an increment of 
30,000 vehicles, and then to 480,000 vehicles with an increment of 14,000 vehicles; (2) 
the evacuation demand was increased from 480,000 to 580,000 vehicles with an 
increment of 10,000 vehicles; (3) the  evacuation demand was increased from 580,000 to 
640,000 vehicles with an increment of 20,000 vehicles. Dynamic traffic information on 
congestion was assumed to be accessible to the evacuees throughout evacuation trip 
routes and only medium to low detouring response rates of evacuees to congestion 
situations were considered to follow the behaviors learned from past evacuations. The 
measures of effectiveness (MOE) including average travel time and traffic conflicting for 
the evacuation performance are shown in Figures 3-14 and 3-15.  

3.6.4 Simulation Results 
Average travel time results are shown in Figure 3-14. Figure 3-14(a) shows the average 
travel time curves along with evacuation demand of the fourteen traffic control scenarios, 
and Figure 3-14(b) shows the percentages of improvement over the non-gating scenarios in 
average travel time along with evacuation demand.  
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(a) Average travel time before and after using gating strategy 

 

 

(b) Reduction of average travel time 

Figure 3-14: Performance of reducing average travel time. 

As shown in Figure 3-14(a) and Figure 3-14(b), all the gating scenarios could achieve better 
evacuation performance with reduced average travel time than the non-gating strategy 
could. The average travel time for Scenario Gate 1_2_3_4_5 is the smallest of the fourteen 
scenarios which is from 57.8 minutes with 72.9% improvement at the lowest demand of 
286,000 vehicles to 151.2 minutes with 48% improvement at the highest demand of 
640,000 vehicles.  The ascending order of the 14 scenarios in average travel time are 
Scenario Gate 1_2_3_4_5, Scenario Gate 2_3_4_5, Scenario Gate 1_2_4_5, Scenario Gate 
1_3_4_5, Gate 2_4_5, Gate 3_4_5, Gate 1_4_5, Gate 4_5, Gate 2, Gate 3, Gate 4, Gate 5, 
Gate 1, and no gate. Among the top five scenarios of Gate 1_2_3_4_5, Scenario Gate 
2_3_4_5, Gate 1_2_4_5, Gate 1_3_4_5, and Gate 2_4_5, the results for average travel time 
are almost the same for the lower evacuation demand from 286,000 to 316,000 vehicles, 
while the scenarios with more gates generally tend to have better performances at higher 
evacuation demands from 346,000 to 640,000 vehicles. Noticeably, a gating control strategy 
deployed with Gate 2 tends to have a better performance in average travel time than any 
simulation scenario without Gate 2 except for the single gate scenario. The good 
connectivity of Gate 2 with two multilane highways may have contributed to the superior 
performance in the scenarios including the gate node. Considering the deployment 
complexity and the cost involved in setting up for contraflow operations on inbound traffic 
lanes, Gate 2_4_5 would be considered the best scenario based on the simulations.   
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Traffic conflicts of the top five scenarios before and after using gating strategy are shown in 
Figure 3-15. Figure 3-15(a) shows the traffic conflicting curves, and Figure 3-15(b) shows the 
percentages of reduction. 

 

 

(a) Traffic conflicts before and after using gating strategy  

 

 

(b) Reduction of traffic conflicts 

Figure 3-15: Performance of reducing traffic conflicting. 
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In Figure 3-15(a), the number of possible traffic conflicts using a gating strategy is always 
lower than that using the non-gating strategy. When the evacuation demand is low, the 
gating strategy improves the traffic conflicts slowly by showing the number of avoided 
traffic conflicts between 67,500 vehicles and 69,500 vehicles in each scenario. The 
percentage of improvement over the non-gating scenario is roughly between 43.9% in Gate 
1_2_4_5 and 54.9% in Gate 2_3_4_5 at the low evacuation demands. When the evacuation 
demand is high, a gating strategy could well improve the traffic conflicting by showing the 
reduced number of possible traffic conflicts in each gating scenario. Figures 3-15(a) and 3-
15(b) show that at an evacuation demand larger than 376,000 vehicles, out of the five 
gating strategies, Gating 1_2_3_4_5 is the best scenario to improve traffic conflicting with 
59.9% improvement at 376,000 evacuating vehicles and 63.1% at 64,000 vehicles.  
Respectively, the other scenarios Gate 2_3_4_5, Gate 1_2_4_5, Gate 1_3_4_5, and Gate 
2_4_5 could have 46.8, 53.0, 50.9 and 49.4% improvement rates at the demand of 640,000 
vehicles. 

The simulation results with the realistic large scale evacuation network confirmed that a 
gating control strategy could improve the evacuation performance by reducing the average 
travel time and total possible traffic conflicts in evacuation traffic operations in the 
network. 
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3.7.  CONCLUSIONS 
This research uses decentralized traveler information data to locate potential congestions to be 
applied with the proposed gating control traffic management strategies to reduce traffic 
congestions in emergency events. Travel time reliability measures are applied to account for 
delays and identify significant traffic congestions for potential gate locations in evacuation 
zones. Performance of the gating control traffic management strategies are evaluated using a 
case study, with DTALite program, a simulation based DTA tool. The traffic simulations in the 
case study for the evacuation network in Memphis, TN configured with the gating control 
strategies using the decentralized traveler information data have shown the effectiveness of 
the gating control traffic management strategies in managing evacuation traffic operations. 
From this research, the following findings are observed. 

1. The gating control traffic management strategies deployed using the decentralized 
traveler information data, could well reduce congestion for emergency events under 
extreme weather. The travel time reliability data analysis based on the probe data could 
catch the dynamic nature of potential congestions and achieve improved performance 
of average travel time and traffic conflicts in a realistic large scale evacuation network. 

2. According to the average buffer time index results, there is one segment checked during 
AM peak hours and four segments checked during PM peak hours. Compared to AM 
peak hours, travel reliability is lower during PM peak hours. The segments on which the 
index values are larger than 0.55 during PM peak hours are segment 6 on TN-277 
Southbound and segment 10 on Democrat Road Eastbound in Zone I, segment 17 on 
Getwell Road Southbound in Zone II, and segment 29 on TN-204 Northbound in Zone III. 
They are identified as the potential traffic congestion locations. 

3. Simulation results of the gating traffic management strategies with the realistic large 
scale evacuation network in fourteen scenarios, show that all the gating scenarios could 
achieve better evacuation performance with reduced average travel time than the non-
gating strategy could. The smallest average travel time for scenario is from 57.8 minutes 
with 72.9% improvement at the lowest demand of 286,000 vehicles to 151.2 minutes 
with 48.0% improvement at the highest demand of 640,000 vehicles. The simulation 
results also show that the number of possible traffic conflicts using a gating strategy is 
always lower than that using the non-gating strategy. The best scenario could improve 
traffic conflicting with 59.9% improvement at 376,000 evacuating vehicles and 63.1% at 
64,000 vehicles. The simulation results confirm that a gating control strategy could 
improve the evacuation performance by reducing the average travel time and total 
possible traffic conflicts in evacuation traffic operations in the network. 

 

Assessing network vulnerability serves the ultimate goal of achieving resiliency for the flood 
affected communities that are under constant threats of extreme weather and flooding. Network 
vulnerability measurement spans many application areas in long-term preparedness planning 
and is also vitally important for the development of a short-term or even dynamic response plan 
for an imminent emergency. Many models have been proposed to facilitate the search for 
vulnerabilities by identifying nodes and arcs vital to network operations. A variety of existing 
methods are essential given that disruption to network operation can be hypothesized to impact 
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network traffic operations in a number of ways (e.g., low time reliability, loss of capacity, 
connectivity, efficiency, etc.). However, many researches failed to consider the interacting 
responses of evacuees and the recovering efforts of traffic engineers and traffic management to 
the link disruption and link risk. This study tries to approach the problem with an effort in time 
reliability analysis framework, that can help remind the local authorities not only to identify 
which weak links could lead to recurring congestion to the network, but also to understand how 
a gating control strategy associated with appropriate traffic management would possibly be 
deployed at these weak points and improve evacuation performance. In addition, traffic 
simulations based on traffic flow theory, traffic assignment, driver rerouting behaviors with 
dynamic traffic information (considering the recent near ubiquity of mobile devices, often with 
routing applications such as Google Maps, Waze, etc.), and available traffic control strategies 
should be conducted for an evacuation network to identify possible critical links of the road 
network in case of an emergency evacuation.  

It should be noted that the study was based on a few assumptions which may not be true for a 
problem at hand. First, the research assumed the traveler information data reflects a recurring 
traffic pattern for the study area. Second, the study assumed an evacuation order should allow 
enough time for the gating control strategy and the associated lane reversal and contra-flow to 
be set up.   How to make the decentralized travel data more useful for ITS based and traveler 
information data enabled traffic management in emergency evacuation operations and planning 
would be a direction for our future study.   
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APPENDICES   

APPENDIX A – ACRONYMS, ABBREVIATIONS, ETC. 
 

Abbreviation Description 

ACS American Community Survey 

AMS Analysis, Modelling, and Simulation 

ATDM Active Transportation and Demand Management 

ATIS Advanced Traveler Information Systems 

ATT Average Travel Time 

BI Buffer Index 

COV Coefficient of Variation 

DMS Dynamic Message Signs 

DNL Dynamic Network Loading 

DNR Did Not Respond 

DTA Dynamic Traffic Assignment 

ETT Expected Travel Time 

FDOT Florida Department of Transportation 

FHWA Federal Highway Administration 

GDOT Georgia Department of Transportation 

GEE Generalized Estimating Equation 

GLH Google Location History 

HAR Highway Advisory Radio 

HCM Highway Capacity Manual 

ICM Integrated Corridor Management 

ITS Intelligent Transportation System 

KML Keyhole Markup Language 

LOS Level-of-Service 

LR Linear Regression 

MAE Mean Absolute Error 

MLE Maximum Likelihood Estimation 

MLP Multilayer Perceptron 

MOE Measurements of Effectiveness 

MPO Metropolitan Planning Organization 

NOAA National Oceanic and Atmospheric Administration 

ODE One-Destination Evacuation 

PAZ Protective Action Zone 

PI Perfect Information 

PT Planning Time 

RBF Radical Basis Function 
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RITIS Regional Integrated Transportation Information System 

STA Static Traffic Assignment 

STD Standard Deviation 

STRIDE 
 Southeastern Transportation Research, Innovation, Development, and 
Education Center  

SVM Support Vector Machine 

TMC Traffic Management Center 

TOD Time-of-Day 

V/C Volume-to-Capacity 

VHT Vehicle Hours Traveled 

VMS Variable Message Signs 

VMT Vehicle Miles Traveled 

WSS Within-cluster Sum of Squares 
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APPENDIX B – USER SURVEY (FULL) [GT] 
 

*  Indicates a question that was merged with another question in the short survey used on 
11/10/2018 

** Indicates a question that was removed in the short survey used on 11/10/2018 

 

NAVIGATION USE SURVEY 

SURVEYOR NAME:   

LOCATION:   
DATE: 

 

Survey ID# [Office use 
only] 

 

A. (READ STATEMENT) Hello, Georgia Tech is conducting a research project to find out how you use 

navigation in your vehicle. Do you have a few minutes to answer some questions and are you at 
least 18 years of age? 1. Yes – agree and 18 or older (Go to C) 2.  No or under 18 

(GO TO B AND FILL OUT REFUSAL) 

B. Refusals Count: 
Type of refusal:      Tally: 

1.  Verbal refusal (not language barrier)  ____________________ 

2.  Non-verbal refusal   ____________________ 

3.  Language barrier    ____________________    

4.  Under 18 years of age   ____________________ 

    

C. Do you regularly drive a car?   1. Yes (Go to D)   2. No (STOP SURVEY) 

       (at least twice per week)     Tally: _________________________ 

D. RECORD INTERVIEW START TIME _____: _____ (Military Time) 

E. RECORD GENDER BY OBSERVATION (CIRCLE ONLY ONE)   1. Male  2. Female 

1. Imagine you are getting in your car, what do you mainly use for vehicle navigation? (CIRCLE ONLY 
ONE) * 

1. Smartphone 3. Online maps prior to getting in car 5. Other(Specify)_______________ 

2. In-vehicle Navigation 4. Paper maps prior to getting in car 99. DNR 

2. What type of mobile phone do you mainly use? (CIRCLE ONLY ONE) * 

1. iPhone 3. Other smartphone (Specify) ____________ 5. None (STOP SURVEY) 

2. Android 4. Non-smartphone (STOP SURVEY) 99. DNR (STOP SURVEY) 
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3. Which of the following apps do you use for directions? (READ LIST. CIRCLE ALL THAT APPLY) 

1. Apple Maps 4. TomTom 7. Other 
(Specify)_______________ 

2. Waze 5. Inrix 8. None (GO TO # 12 & # 14) 

3. Google Maps 6. Here 99. DNR 

4. How often do you use the following types of roads? (READ LISTS AND CIRCLE ONLY ONE FOR EACH 
ROW) ** 

 

Freeways 

5. 

(Almost) 
Daily 

4. 

At least 
once / 
week 

3. 

At least 
once / 
month 

2. 

Several 
times / 
year 

1. 

Seldom or 
never 

99. 

DNR  

 

Major Roads 

5. 

(Almost) 
Daily 

4. 

At least 
once / 
week 

3. 

At least 
once / 
month 

2. 

Several 
times / 
year 

1. 

Seldom or 
never 

99. 

DNR  

 

Neighborhood 
Streets 

(30 mph or 
less) 

5. 

(Almost) 
Daily 

4. 

At least 
once / 
week 

3. 

At least 
once / 
month 

2. 

Several 
times / 
year 

1. 

Seldom or 
never 

99. 

DNR  

5. How often do you use navigation apps on the following types of roads? (READ LISTS AND CIRCLE 
ONLY ONE FOR EACH ROW)  

 

Freeways 

5. 

(Almost) 
Daily 

4. 

At least 
once / 
week 

3. 

At least 
once / 
month 

2. 

Several 
times / 
year 

1. 

Seldom or 
never 

99. 

DNR  

 

Major Roads 

5. 

(Almost) 
Daily 

4. 

At least 
once / 
week 

3. 

At least 
once / 
month 

2. 

Several 
times / 
year 

1. 

Seldom or 
never 

99. 

DNR  

 

Neighborhood 
Streets 

5. 

(Almost) 
Daily 

4. 

At least 
once / 
week 

3. 

At least 
once / 
month 

2. 

Several 
times / 
year 

1. 

Seldom or 
never 

99. 

DNR  
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(30 mph or 
less) 

6. For what types of trips do you use apps for directions? (READ LIST. CIRCLE ALL THAT APPLY) * 

5. 

Regular 
commute 
trips 

4. 

Regular non-
commute trips 
(grocery store, 
weekly dinner) 

3. 

Infrequent 
trips (yearly 
doctor visit, 
visiting family) 

2. 

First time 
trips 

1. 

Other 

______________ 

99. 

DNR  

7. For which of the following trip durations do you typically use a navigational app? (READ LIST. CIRCLE 
ALL THAT APPLY)  * 

5. 

1 – 5 
minutes 

4. 

6 – 15 minutes 

3. 

16 – 30 minutes  

2. 

31 – 60 
minutes 

1. 

61+ minutes 

99. 

DNR  

8. What percentage of your trips do you use directions in real-time (listening to or watching app route 
minute-by-minute)? (CIRCLE ONLY ONE APPROPRIATE RANGE. READ IF NEEDED) ** 

7. 

100% of 
trips 

6. 

80 – 99% 

5. 

60 – 79% 

4. 

40 – 59% 

3. 

20 – 39% 

2. 

1 – 19% 

1. 

Never 

99. 

DNR 

9. What percentage of your trips do you follow the route suggested by the app? (CIRCLE ONLY ONE 
APPROPRIATE RANGE. READ IF NEEDED) 

7. 

100% of 
trips 

6. 

80 – 99% 

5. 

60 – 79% 

4. 

40 – 59% 

3. 

20 – 39% 

2. 

1 – 19% 

1. 

Never 

99. 

DNR 

10. When you do not follow the suggested route, what is your primary reason? (READ LIST. CIRCLE 
ONLY ONE.) 

1. Travel time savings is not enough 4. Do not trust the app’s route 6. Other ___________________ 

2. Avoiding neighborhoods 5. App route is too complicated 99. DNR 

3. Prefer my typical route   

11. What time savings is required for you to accept a route change? (CIRCLE ONLY ONE APPROPRIATE 
RANGE. READ IF NEEDED) ** 

5. 4. 3. 2. 1.  99. 
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0 minutes (always 
take 
recommended 
route) 

1 – 2 
minutes  

3 – 5 minutes 6-10 minutes 11+ 
minutes 

DNR  

12. Do you think the use of such apps changes PEOPLE’S USAGE (time they drive on) the following 
types of roads? (READ LIST. CIRCLE ONLY ONE IN EACH ROW.) 

 

Freeways 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

 

Major Roads 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

 

Neighborhood 
Streets 

(30 mph or 
less) 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

13. Do you think the use of such apps changes YOUR USAGE (time you drive on) the following types of 
roads? (READ LIST. CIRCLE ONLY ONE IN EACH ROW.) 

 

Freeways 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

 

Major Roads 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

 

Neighborhood 
Streets 

(30 mph or 
less) 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  
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(ADDITONAL SPACE IF RESPONDENT MAKES COMMENTS) 

 

 

 

14. How do you think the apps change the characteristics of neighborhood streets in the following 
areas? (READ LIST. CIRCLE ONLY ONE IN EACH ROW.) 

 

Speed 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

Driver 
Alertness 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

15. How do you think the apps change YOUR BEHAVIOR on neighborhood streets in the following 
areas? (READ LIST. CIRCLE ONLY ONE IN EACH ROW.) 

 

Speed 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

Driver 
Alertness 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

16. What is your home zip code? ________________ (ENTER FIVE-DIGIT NUMBER) 

 
17. What best describes the type of residence you currently live in? (READ LIST. CIRCLE ONLY ONE) 

5. 

Detached  

(free-standing) 
home 

4. 

Attached home / 
duplex / 
townhouse 

3. 

Apartment / 
condo building 

2. 

Dormitory 

1. 

Other 
_____________ 

99. 

DNR  
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18. Which of the following categories best represents your age? (CIRCLE ONLY ONE) 

1. 18-24 3. 35-44 5. 55-64 7. 75 or Over 

2. 25-34 4. 45-54 6. 65-74 99. DNR  

19. What is the highest level of education you have completed? (CIRCLE ONLY ONE) 

1.  Less than 9th grade 4.  Some college but no bachelor’s degree 99.  DNR  

2.  From 9th grade to 12th grade 5.  Bachelor’s degree  

3.  High school graduate 6.  Graduate work or postgraduate degree  

20. How many persons, including children, are in your household?      _________      99.   DNR  

21. How many of these persons in your household are children under the age of 18?  ________    99.   
DNR  

22. How frequently do you DRIVE FOR Uber, Lyft, or similar services? (DRIVE FOR, NOT USE. CIRCLE 
ONLY ONE) ** 

5. 

(Almost) 
Daily 

4. 

At least once / 
week 

3. 

At least once / 
month 

2. 

Previously but 
no longer 

1. 

Never have 
driven 
Uber/Lyft 

99. 

DNR  

23. Do you have other comments related to the use of navigational apps? 
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________ 

24. Do you have Google Location Services turned on?  

1. 
Yes 
(REFER TO LOCATION 
DATA SURVEY) 

2. 
No 
(THANK THEM AND 
END SURVEY) 

3. 
Unsure 
(REFER TO 
LOCATION DATA 
SURVEY) 

 

RECORD INTERVIEW END TIME _____: _____ (Military Time)    

THANK YOU!! 
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APPENDIX C – WEB DATA COLLECTION  
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APPENDIX D – ADDITIONAL SURVEY RESULTS  
 

 

 

1%

13%

13%

17%

15%

17%

24%

0 5 10 15 20 25 30 35 40 45 50

0 % of trips

1 - 19% or trips

20 - 39% of trips

40 - 59% of trips

60 - 79% of trips

80 - 99% of trips

100% of trips

Percent of Trips Where Directions are Used in Real Time
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APPENDIX D – DATA BY DAY 

Survey 
ID 

# of 
Trips 

Days 
Collected 

% of Days with 
Collected Data 

Points 
in ARC 

Trips 
in 
ARC 

% Trips 
in ARC 

Trips 
Freeway 

% Freeway 
Trips 

Trips 
Major 
Road 

% 
Major 
Trips 

Trips 
Neighborhood 

% Hood 
Trips 

Freeway 
Trips per 
Day 

Major 
Trips 
per Day 

Hood 
Trips per 
Day 

1 515 64 52% 1948 31 6% 26 84% 28 90% 31 100% 0.4 0.4 0.5 

2 601 114 93% 11256 389 65% 202 52% 248 64% 341 88% 1.8 2.2 3.0 

3 796 

118 

97% 

11278 

796 100% 505 63% 604 76% 655 82% 4.3 5.1 5.6 

4 628 122 100% 19696 602 96% 506 84% 507 84% 489 81% 4.1 4.2 4.0 

5 544 114 93% 9407 503 92% 254 50% 442 88% 468 93% 2.2 3.9 4.1 

6 753 117 96% 19985 685 91% 535 78% 657 96% 548 80% 4.6 5.6 4.7 

7 659 118 97% 9207 564 86% 328 58% 512 91% 474 84% 2.8 4.3 4.0 

8 191 71 58% 3907 162 85% 96 59% 124 77% 154 95% 1.4 1.7 2.2 

9 982 120 98% 1720 954 97% 449 47% 854 90% 903 95% 3.7 7.1 7.5 

10 813 120 98% 10859 673 83% 308 46% 634 94% 484 72% 2.6 5.3 4.0 

11 485 69 57% 22174 484 100% 312 64% 453 94% 462 95% 4.5 6.6 6.7 

12 285 71 58% 6364 287 101% 168 59% 208 72% 271 94% 2.4 2.9 3.8 

13 499 115 94% 9550 210 42% 165 79% 187 89% 205 98% 1.4 1.6 1.8 

14 749 117 96% 17660 267 36% 196 73% 235 88% 218 82% 1.7 2.0 1.9 

15 619 120 98% 15020 508 82% 175 34% 320 63% 488 96% 1.5 2.7 4.1 

16 164 51 42% 2899 153 93% 63 41% 129 84% 145 95% 1.2 2.5 2.8 
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Survey 
ID 

# of 
Trips 

Days 
Collected 

% of Days with 
Collected Data 

Points 
in ARC 

Trips 
in 
ARC 

% Trips 
in ARC 

Trips 
Freeway 

% Freeway 
Trips 

Trips 
Major 
Road 

% 
Major 
Trips 

Trips 
Neighborhood 

% Hood 
Trips 

Freeway 
Trips per 
Day 

Major 
Trips 
per Day 

Hood 
Trips per 
Day 

17 308 52 43% 5838 128 42% 95 74% 123 96% 110 86% 1.8 2.4 2.1 

18   108 89% 44014 761   500 66% 659 87% 732 96% 4.6 6.1 6.8 

19 126 28 23% 2931 126 100% 41 33% 114 90% 80 63% 1.5 4.1 2.9 

20 3 1 1% 17 3 100% 0 0% 2 67% 3 100% 0.0 2.0 3.0 

21 898 122 100% 26761 762 85% 395 52% 696 91% 717 94% 3.2 5.7 5.9 

22 669 114 93% 10825 599 90% 214 36% 430 72% 586 98% 1.9 3.8 5.1 

23 481 61 50% 10279 460 96% 358 78% 385 84% 388 84% 5.9 6.3 6.4 

24 432 59 48% 17711 414 96% 266 64% 362 87% 365 88% 4.5 6.1 6.2 

25 849 116 95% 7141 199 23% 134 67% 182 91% 178 89% 1.2 1.6 1.5 

26 341 69 57% 8662 330 97% 127 38% 310 94% 207 63% 1.8 4.5 3.0 
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APPENDIX E – SURVEY [FIU] 

NAVIGATION USE SURVEY 

SURVEYOR NAME:   
 
 

DATE: 

 
SURVEY ID#:  

 

A. (READ STATEMENT) Hello, Florida International University is conducting a research 
project to find out how you use navigation in your vehicle. Do you have a few minutes to 
answer some questions and are you at least 18 years of age? 

1.  Yes – agree and 18 or 
older 

2.  No or under 18 (STOP SURVEY) 

Tally: ___________________________                    

B. Do you regularly drive a car?   1. Yes    2. No (STOP SURVEY) 
       (at least twice per week)     Tally: ___________________ 
……………………………………………………………………………………………………… 
1. Imagine you are getting in your car, what do you mainly use for vehicle navigation? 

(CIRCLE ONLY ONE) 
1. Android 2. Website prior to getting in 

car 
3. No navigation 

4. IPhone 
5. Paper maps prior to getting 

in car 
6. Dynamic Message Sign 

(DMS) 

7. Other Smartphone 
8. In-vehicle Navigation 9. Other 

10. Media (Television/Radio) 
11. 511 Call/App 

     10. DNR 

2. Which of the following apps do you use for directions? (READ LIST. CIRCLE ALL 
THAT APPLY) 

1. Apple Maps 4. TomTom 7. Other (Specify)___ 

2. Waze 5. Inrix 8. None  

3. Google Maps 6. Here 99. DNR 
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3. How often do you use navigation apps on the following types of roads? (READ LISTS 
AND CIRCLE ONLY ONE FOR EACH ROW)  

 

Freeways 

5. 

(Almost) 
Daily 

4. 

At least 
once / 
week 

3. 

At least 
once / 
month 

2. 

Several 
times / 
year 

1. 

Seldom 
or never 

99. 

DNR 

 

Major Roads 

 

5. 

(Almost) 
Daily 

 

4. 

At least 
once / 
week 

 

3. 

At least 
once / 
month 

 

2. 

Several 
times / 
year 

 

1. 

Seldom 
or never 

 

99. 

DNR 

 

Neighborhood 
Streets 

(30 mph or 
less) 

 

5. 

(Almost) 
Daily 

 

4. 

At least 
once / 
week 

 

3. 

At least 
once / 
month 

 

2. 

Several 
times / 
year 

 

1. 

Seldom 
or never 

 

99. 

DNR 

4. We are trying to figure out for which trip types and lengths you use navigation apps. 
For each type of trip, which of the following trip durations do you typically use a 
navigational app? (READ LIST. CIRCLE ALL THAT APPLY) 

 

Regular 
commute 
trips 

 

 

6.  

Does 
not use  

 

5. 

1 – 5 
minutes 

 

4. 

6 – 15 
minutes 

 

3. 

16 – 30 
minutes  

 

2. 

31 – 60 
minutes 

 

1. 

61+ 
minutes 

 

99. 

DNR  

Regular 
non-
commute 
trips 
(grocery 
store, 
weekly 
dinner) 

 

 

6.  

0 
minutes 

 

5. 

1 – 5 
minutes 

 

4. 

6 – 15 
minutes 

 

3. 

16 – 30 
minutes  

 

2. 

31 – 60 
minutes 

 

1. 

61+ 
minutes 

 

99. 

DNR  

Infrequent 
trips 
(doctor 
visit, visiting 
family) 

 

6.  

0 
minutes 

 

5. 

1 – 5 
minutes 

 

4. 

6 – 15 
minutes 

 

3. 

16 – 30 
minutes  

 

2. 

31 – 60 
minutes 

 

1. 

61+ 
minutes 

 

99. 

DNR  
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First time 
trips 

 

6.  

0 
minutes 

 

5. 

1 – 5 
minutes 

 

4. 

6 – 15 
minutes 

 

3. 

16 – 30 
minutes  

 

2. 

31 – 60 
minutes 

 

1. 

61+ 
minutes 

 

99. 

DNR  

5. You consider to divert during an incident if you travel is mostly for: (CIRCLE ONLY 
ONE APPROPRIATE RANGE. READ IF NEEDED) 

1. 

Regular Commute 
trips 

2. 

Regular non-
commute trips 

3. 

Infrequent trips 

4. 

First time trips 

6. How many times in last three months during an incident did you divert? (CIRCLE 
ONLY ONE APPROPRIATE RANGE. READ IF NEEDED) 

7. 

100% of 
the times 

 

6. 

80 – 
99% 

5. 

60 – 
79% 

4. 

40 – 59% 

3. 

20 – 
39% 

2. 

1 – 
19% 

1. 

Never 

99. 

DNR 

7. How much increase in delay of your trip will make you consider divert? (CIRCLE 
ONLY ONE APPROPRIATE RANGE. READ IF NEEDED) 

1. 

 <10%  

(up to 6 
minutes 
for a hour 
trip) 

2. 

11 – 20% 
(7 to 12 
minutes 
for a hour 
trip) 

3. 

21 – 30% 
(13 to 18 
minutes 
for a hour 
trip) 

4. 

31 – 40% 
(19 to 24 
minutes for 
a hour trip) 

5. 

41 – 
50% 
(25 to 30 
minutes 
for a 
hour trip) 

6. 

>50% 
(more 
than 30 
minutes 
for a 
hour trip) 

7. 

Never 
divert 

99. 

DNR 

8. How much travel time savings trigger you to diverted to an alternative route during an 
incident? (CIRCLE ONLY ONE APPROPRIATE RANGE. READ IF NEEDED) 

1. 

 <10%  

(up to 6 
minutes 
for a hour 
trip) 

2. 

11 – 20% 
(7 to 12 
minutes 
for a hour 
trip) 

3. 

21 – 30% 
(13 to 18 
minutes 
for a hour 
trip) 

4. 

31 – 40% 
(19 to 24 
minutes for 
a hour trip) 

5. 

41 – 
50% 
(25 to 30 
minutes 
for a 
hour trip) 

6. 

>50% 
(more 
than 30 
minutes 
for a 
hour trip) 

7. 

Never 
divert 

99. 

DNR 
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9. What percentage of your trips do you follow the route suggested by the app? (CIRCLE 
ONLY ONE APPROPRIATE RANGE. READ IF NEEDED) 

7. 

100% of 
trips 

6. 

80 – 
99% 

5. 

60 – 
79% 

4. 

40 – 59% 

3. 

20 – 
39% 

2. 

1 – 
19% 

1. 

Never 

99. 

DNR 

10. When you do not follow the suggested route, what is your primary reason? (READ 
LIST. CIRCLE ONLY ONE.) 

1. Travel time savings is not 
enough 

4. Do not trust the app’s route 6. Other _________ 

2. Avoiding neighborhoods 5. App route is too complicated 99. DNR 

3. Prefer my typical route   

11. Do you think the use of such apps changes PEOPLE’S USAGE (time they drive on) the 
following types of roads? (READ LIST. CIRCLE ONLY ONE IN EACH ROW.) 

 

Freeways 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

 

Major Roads 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

 

Neighborhood 
Streets 

(30 mph or 
less) 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

12. How do you think the apps change the characteristics of neighborhood streets in the 
following areas? (READ LIST. CIRCLE ONLY ONE IN EACH ROW.) 

 

Speed 

5. 

Large 
Increase 

4. 

Small 
Increase 

3. 

Neither 
Increase 
nor 
Decrease 

2. 

Small 
Decrease 

1. 

Large 
Decrease 

99. 

DNR  

Driver 
Alertness 

5. 4. 3. 2. 1. 99. 
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Large 
Increase 

Small 
Increase 

Neither 
Increase 
nor 
Decrease 

Small 
Decrease 

Large 
Decrease 

DNR  

13. What is your home zip code? ________________ (ENTER FIVE-DIGIT NUMBER) 
 

14. What best describes the type of residence you currently live in? (READ LIST. CIRCLE 
ONLY ONE) 

5. 

Detached  

(free-standing) 
home 

4. 

Attached home 
/ duplex / 
townhouse 

3. 

Apartment / 
condo 
building 

2. 

Dormitory 

1. 

Other 
_____________ 

99. 

DNR  

15. Which of the following categories best represents your age? (CIRCLE ONLY ONE) 
1. 18-24 3. 35-44 5. 55-64 7. 75 or Over 

2. 25-34 4. 45-54 6. 65-74 99. DNR  

16. What is your gender? 
1. Male   2. Female 3. Other 4. DNR 

17. What is the highest level of education you have completed? (CIRCLE ONLY ONE) 
1.  Less than 9th grade 4.  Some college but no bachelor’s degree 99.  DNR  

2.  From 9th grade to 12th grade 5.  Bachelor’s degree  

3.  High school graduate 6.  Graduate work or postgraduate degree  

18. How many persons, including children, are in your household?      _________      99.   
DNR  
 

19. How many of these persons in your household are children under the age of 18?  
________    99.   DNR  
 

20. Do you have other comments related to the use of navigational apps?  
______________________________________________________________________________ 
______________________________________________________________________________ 
______________________________________________________________________________ 

THANK YOU!! 
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APPENDIX F – SUMMARY OF ACCOMPLISHMENTS 
 

a. Student and faculty accomplishments such as awards, etc. 

• Dr. Mohammed Hadi received the College of Engineering Faculty Research 

Award, 2017-2018 

• Lei Bu received her Ph.D. degree in Transportation Engineering from Jackson 

State University with this research as part of her thesis. 

 

b.  Products developed as a consequence of this project 

The code for creating a website to receive “Google Location History” data has 

been published to GitHub at: https://github.com/gti-gatech/navigation_apps 

 

c.  Publications and presentations 

• Tariq, M.T., R.C. Saha, and M. Hadi, Methodology to Derive Route Diversion 

during Freeway Incident Condition, Presented at the Transportation Research 

Board’s 98th Annual Meeting, Washington, D.C., 2019 

• Bu, L., F. Wang, X. Zhou, and C. Yin.  Managed gating control strategy for 

emergency evacuation, Transportmetrica A - Transport Science, Issue 10, Vol. 

14, November 2018. https://doi.org/10.1080/23249935.2018.1552336 

• Kiriazes, R., Watkins, K., Guin, A., Hunter, M. Impact of Smartphone 

Applications on Trip Routing, Presented at the Transportation Research 

Board’s 99th Annual Meeting, Washington, D.C., 2020 

 

d.  Articles in the news related to this project (please provide links to articles) 

NA 
 

e.  Results and activities undertaken that support the mission of this grant 

The results of the project were presented at a professional conference, the ITS 

Georgia Annual meeting on October 7 in Athens Georgia. The presentation was 

very well accepted by the Georgia Department of Transportation 

Representatives and the consultant community and piqued considerable interest 

in the results. (Meeting website: http://www.itsga.org/event/2019-annual-

meeting-and-exposition/)  
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