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ABSTRACT 
Proper evaluation of traffic operations integrating Connected and Autonomous Vehicles (CAVs) 

requires accurate representation of these emerging technologies within the context of 

microscopic simulation, allowing for detailed evaluation of their operational and environmental 

effects. To accomplish this, the objectives of this project were: 

1. Evaluate the microscopic simulator VISSIM’s ability to simulate CAVs 

2. Develop a comprehensive simulation extension to represent CAVs in VISSIM 

3. Integrate emissions modeling to calculate real-time energy and emission estimates 

4. Assess traffic operational and environmental performance measures for various levels of 

CAVs. 

Evaluation of VISSIM revealed that internal modeling of CAVs has several limitations. For 

external modeling, two VISSIM interfaces are useful. The Component Object Model (COM) 

Application Programming Interface (API) is the superior approach for fetching data and 

modeling connectivity, whereas the External Driver Model (EDM) is a better tool for lateral and 

longitudinal control. Utilizing both the COM API and EDM overcomes the disadvantages of both, 

creating a more robust platform for CAV modeling. 

Based on this, a comprehensive simulation extension was developed to represent CAVs in 

VISSIM. CAVs were modeled and an isolated signalized intersection was simulated. The 

trajectory data from VISSIM were leveraged to estimate energy, fuel consumption, and 

greenhouse gas emissions using the Motor Vehicle Emission Simulator (MOVES) method.  

The results show that CAVs in the traffic stream result in net improvement in traffic operational 

measures (travel time and speed). CAV, the combination of the two technologies (i.e. autonomy 

and connectivity) yields better performance than each (CV and AV) on their own. However, 

emissions did not follow the same trend. While increasing AV penetration rates resulted in 

emissions reductions, increasing CV and CAV penetration rates resulted in higher emissions.  

A deeper analysis into the root cause for these trends showed that while the CV logic chosen 

for testing in the VISSIM simulation environment seeks to maximize the likelihood of vehicle 

arrival-on-green, the algorithm likely results in increased variations in second-by-second 

accelerations, leading to overall higher emissions. 

The results are based on a small and relatively simple network, and operations may be different 

for larger and more complex networks. In addition, the AV, CV, and CAV findings are limited to 

the connectivity and autonomy algorithms tested in this project. A more complex network with 

varying vehicle movement algorithms would allow for a more robust analysis. 

Keywords: Connected and Autonomous Vehicles (CAV), Microsimulation, VISSIM, Emissions 

Modeling, MOVES 
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EXECUTIVE SUMMARY 
The goal of this project is to develop a robust microscopic simulation extension to allow the 

evaluation of traffic operational quality considering the presence of Connected and 

Autonomous Vehicles (CAVs). 

The research team evaluated the capability of the microscopic simulator VISSIM (Version 10.0) 

to model CAVs. There are two external interfaces with powerful features available for CAV 

modeling in VISSIM: Component Object Model (COM) Application Programming Interface (API) 

and External Driver Model (EDM). CAV modeling was developed in VISSIM by leveraging the 

strengths of both interfaces: the research team used the COM API to access network elements 

and the EDM to maintain the longitudinal control of vehicles. 

The trajectory data from VISSIM were used to estimate energy, fuel consumption, and 

greenhouse gas emissions. The calculations follow the Motor Vehicle Emission Simulator 

(MOVES) methods developed and mandated by the US Environmental Protection Agency 

(USEPA). 

A four-legged isolated signalized intersection was modeled in VISSIM and a model by Talebpour 

and Mahmassani (2016) was used to replicate the Autonomous Vehicle (AV) logic. An 

Infrastructure- to-Vehicle (I2V) application (PTV, 2017) allowing the connected vehicles (CVs) to 

access signal timing information was used to replicate the information CVs receive. The CAV 

logic combines the AV logic and the CV logic, by replacing the VISSIM car-following model with 

the AV car-following model in the CV logic. 

Several traffic scenarios were simulated using different demand and CAV penetration levels. 

The results show a net improvement in traffic operational measures when CAVs are in the 

traffic stream. However, emissions did not follow the same trend. While increasing AV 

penetration rates resulted in emissions reductions, increasing CV and CAV penetration rates 

resulted in higher emissions. A deeper analysis revealed the CV logic as the probable root 

cause. 

The results are based on a small and relatively simple network, and thus may not be valid for 

larger and more complex networks. In addition, the AV, CV, and CAV findings are limited to the 

vehicle movement algorithms implemented. A more complex network with improved 

technology algorithms would allow for a more robust analysis. 

The simulation extension developed in this project could be used to evaluate CAV strategies for 

a variety of networks and scenarios. Future work includes incorporating a CAV-based signal 

optimization algorithm developed by the University of Florida into the extension, enhancing the 

optimization to include emissions, and applying the tool developed to large-scale 

transportation challenges. 
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1. INTRODUCTION 
Significant improvements in autonomous vehicle technologies as well as their connectivity and 

interaction with future generation traffic systems are expected to create a perfect storm in how 

vehicles would navigate through city roads and highways. Autonomous vehicles (AVs) can 

operate on their own and do not require a human driver. They can operate using a variety of 

sensors such as GPS, Lidar, Radar, and smart cameras, as well as terrain information.  

Connected vehicles (CVs) can communicate with surrounding vehicles and infrastructure using 

wireless communications. The US DOT connected vehicle research program aims to enable 

wireless communications among vehicles, infrastructure, and personal communications devices 

(http://www.its.dot.gov/pilots/ ). The program is currently focusing on pilot deployments to 

implement existing research concepts and encourage further innovation. Initial connected 

vehicle technology deployments seek to warn drivers of impending dangers while the vehicle is 

controlled by a human driver; although, operations, sustainability, assess management, etc., CV 

applications are also being explored.  AVs may also have connectivity capabilities; such vehicles 

are called connected/autonomous or automated vehicles (CAVs).  

It is highly likely that soon both connected vehicles and CAVs will be operating side-by-side in 

large numbers in our nation’s highways, along with conventional (CNV) vehicles. This creates 

many opportunities in improving surface transportation efficiency and safety. For example, the 

USDOT Multimodal Intelligent Traffic Signal Systems (MMITSS) initiative aims to provide a 

comprehensive traffic information framework to service all transportation modes, including 

general vehicles, transit, emergency vehicles, freight fleets, and pedestrians and bicyclists in a 

connected vehicle environment.  

According to the National Transportation Operations Coalition, delays at traffic signals account 

for 5% to 10% of all traffic delay on major roadways and contributed an estimated 25% to the 

increase in total highway traffic delays during the past 20 years. Improvements in traffic signal 

timing have the potential to significantly benefit the transportation system. One source of delay 

at signals is inefficient green time utilization in response to fluctuating demand. Another source 

is driver reaction-related delays, including start-up delay. The use of autonomous and 

connected vehicle technology has the potential to reduce the impact of these two factors, 

through the use of their communication capability as well as the potential to fully control 

autonomous vehicle trajectories.  Existing simulation tools are not able to accurately replicate 

the functionality of autonomous and connected vehicles. Therefore, the impact of various 

strategies and market penetrations on mobility and the environment cannot be accurately 

assessed. 

 

 

http://www.its.dot.gov/pilots/
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1.1 OBJECTIVES 
The goal of this project is to develop a robust microscopic simulation extension to allow 

the development and refinement of advanced transportation management strategies 

and evaluation procedures considering the presence of connected and autonomous 

vehicles. The research considers both mobility and environmental impacts. The goals of 

the project are accomplished using the VISSIM (10.0) microscopic simulator to replicate 

and evaluate these strategies. The specific objectives of the study are to: 

1. Evaluate VISSIM’s ability to simulate autonomous and connected vehicle technology.  

2. Develop a comprehensive simulation extension to represent autonomous vehicles in the 

VISSIM simulation environment. This extension may represent autonomous vehicle 

behavior and produces exact vehicle trajectories. The module is to be designed to work 

as a plug-and-play solution across different computer and simulation networks. 

3. Explore the Impact of AVs on delivery services.  

4. Assess traffic operational quality (travel time, average speeds, queues, etc.) and 

environmental (emissions and energy –related) performance measures for a variety of 

demands and CAV market penetration levels at a signalized intersection.  

1.2 SCOPE 
In task 1 (section 2 in this document), evaluations are performed to examine the ability 

of VISSIM to simulate CAVs. The research team studied its capability in longitudinal and 

lateral movement control. In task 2 (section 3), we explore using the combination of 

COM API and EDM interfaces to maintain the longitudinal control of vehicles in a VISSIM 

simulation. In task 3 (section 4), we implement the framework proposed in task 2 with 

specific AV, CV, CAV-related algorithms. The team simulated several scenarios with 

different volume/capacity ratios (v/c ratio) under various AV, CV, and CAV market 

penetration levels and obtained the resulting operational performance at a signalized 

intersection. In task 4 (section 5) results from the emissions modeling using the MOVES 

model are presented. The last section provides conclusions and recommendations. 

 

 

  



   Evaluation of Advanced Vehicle and Communication 
Technologies through Traffic Microsimulation 

   

15 

 

2 EVALUATION OF VISSIM CAPABILITIES TO REPLICATE 
AUTONOMY AND CONNECTIVITY 

Traffic simulation of CAV creates a virtual environment to explore how CAVs will operate and 

impact traffic operations. VISSIM enables various ways for users to virtually simulate vehicles’ 

automation from level 1 to level 5. Depending on the level of automation, users could conduct 

CAV simulation using VISSIM internal parameter settings or externally through an additional 

module and custom algorithm and code development. 

In this section we evaluate the ability to simulate autonomy and connectivity using VISSIM. 

VISSIM provides options to model AV by changing driver parameters internally (e.g., headway 

time, standstill distance, following variation, see (Table 2-1) and externally with the COM API 

and EDM. The internal parameters change was evaluated first, followed by an evaluation of 

external interfaces. We specifically examined VISSIM’s ability to modify vehicle trajectories by 

controlling the vehicle acceleration and steering of an autonomous vehicle. 

2.1 Modeling CAVs 
2.1.1 Modeling CAVs Internally  

Internal parameters of the behavior models in VISSIM (10.0) can be adjusted to 

model AV-related features without any external or API programming. This can be 

achieved by changing VISSIM’s default settings for parameters such as those 

related to car following, lane changing, and speed. This approach provides a full 

evaluation to assess changes in the selected parameters, but it is limited to 

modeling AVs with preset parameters and it cannot be used to model Vehicle-to-

Vehicle (V2V) or Vehicle to Infrastructure (V2I) scenarios. 

Car following  

The car following model in VISSIM is based on research by (Fellendorf & Vortisch, 

2001; Wiedemann & Reiter, 1991). The basic premise of the Wiedemann model 

states that a vehicle is in one of four states of car following: free, approaching, 

following, or braking. The following state changes when a threshold based on 

speed difference and distance difference between the lead and following 

vehicles are crossed. Figure 2-1 shows a graphical description of the Wiedemann 

car following model. 
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Figure 2-1 Wiedemann Car Following Logic  (PTV AG, 2005) 
 

The Wiedemann 99 car following model was developed to provide greater control of the car-

following characteristics for freeway modeling in VISSIM (Wiedemann & Reiter, 1991). The 

Wiedemann 99 model consists of ten calibration parameters. Table 2-1 provides a description 

and the default values for each of the ‘CC’ parameters associated with the Wiedemann 99 

model. 
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Table 2-1 Wiedemann 99 Parameters (Woody, 2006) 

Parameters Description Default Value 

Standstill distance (Wiedemann 99) Desired distance between lead and following vehicle at v = 0 mph 4.92 ft 

Headway Time (Wiedemann 99) Desired time in seconds between lead and following vehicle 0.90 sec 

Following Variation (Wiedemann 99) Additional distance over safety distance that a vehicle requires 13.12 ft 

Threshold for Entering ‘Following’ 
State:(Wiedemann 99) 

Time in seconds before a vehicle starts to decelerate to reach safety distance (negative) -8.00 sec 

Negative ‘Following’ Threshold: (Wiedemann 99) 
Defines negative speed difference during the following process. Low values result in a more sensitive driver reaction 

to the acceleration or deceleration of the preceding vehicle. 
0.35 ft/s 

Positive ‘Following Threshold’: 

(Wiedemann 99) 

Defines positive speed difference during the following process. Low values result in a more sensitive driver reaction 
to the acceleration or deceleration of the preceding vehicle. 

0.35 ft/s 

Speed Dependency of Oscillation: 

(Wiedemann 99) 

Influence of distance on speed oscillation while in the following process. If the value is 0, the speed oscillation is 
independent of the distance. Larger values lead to a greater speed oscillation with increasing distance. 

11.44 

Oscillation Acceleration: (Wiedemann 99) Acceleration during the oscillation process 0.82 ft/s2 

Look ahead distance. Observed vehicles 
The number of observed vehicles or number of certain network objects affects how well vehicles in the link can 

predict other vehicles' movements and react accordingly. Higher value means vehicles can better react to multiple 
network objects in the network 

4 

Average standstill distance (feet) 

(Wiedemann 74) 

Defines the average desired distance between two cars. Higher value means larger standstill distance and lower 
capacity 

6.56 ft 

Additive part of safety distance 

(Wiedemann 74) 

Value used for the computation of the desired safety distance. Higher value means larger standstill distance and 
lower capacity 

2.00 ft 

Multiplic. Part of safety distance 

(Wiedemann 74) 

Value used for the computation of the desired safety distance. Greater value equals greater distribution (standard 
deviation) of safety distance. Higher value means larger standstill distance and lower capacity 

3.00 ft 
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Lane changing 

There are several parameters to modify for lane change behavior, as shown in 

Table 2-2.  

Table 2-2 Lane Change Parameters (PTV- VISSIM, 2016)  

Parameters Description Default Value 

Safety distance reduction 

factor 

This factor is considered for each lane 

change. During the lane change, 

VISSIM reduces the safety distance to 

the value that results from the 

following multiplication: Original 

safety distance * safety distance 

reduction factor. The default value of 

0.6 reduces the safety distance by 

40%. Once a lane change is 

completed, the original safety 

distance is considered again. 

0.6 

Maximum deceleration - 

Own (ft/s2) 

Upper bound of deceleration for own 

vehicle. Higher absolute value means 

more aggressive lane changing 

behaviors 

-13.12 ft/s2 

Advanced merging 

If this option is selected, more vehicles 

can change lanes earlier, therefore 

capacity increases 

Yes 

Cooperative lane change 

If this option is selected, trailing 

vehicles will make necessary lane 

change to facilitate the lane change of 

a leading vehicle 

No 

 

Changes in these internal parameters can be used to reflect simple first-order 

behaviors of AVs. For example, we can set lower standstill distances and lower 

lateral distances for AVs. However, more complex features such as vehicles’ 

longitudinal and lateral movement control, vehicle-to-vehicle (V2V) 

communication, and vehicle-to-infrastructure (V2I) communication cannot be 

modeled through changes in internal parameters.  
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2.1.2 Modeling CAVs Externally 
The following three external VISSIM interfaces can be used to enable modeling 

CAV behaviors: 

i. COM Application Programming Interface (API); 

ii. External Driver Model (EDM) using DriverModel.dll “dynamic link library” 

function; and 

iii. DrivingSimulator.dll that connects with VISSIM simulation in real-time. 

These three interfaces are defined below and described in more detail later in 

the report.  

COM API 

The COM script has access to nearly all data inside VISSIM, and can be made 

visible in a list window, enabling changes in driving behaviors and vehicle 

movements. The COM API cannot explicitly control the lateral movement of the 

CAVs because desired lane changes can only be made by VISSIM. The COM API 

does not depend on a certain programming language. COM objects can be 

developed in a wide range of programming and scripting languages. Certain 

simulation parameters such as acceleration and headway are only readable, 

whereas parameters such as desired speed and desired lane are both readable 

and writable. 

External Driver Model (EDM) 

The EDM is an external driver model compiled in C++ to substitute the VISSIM 

default driver model. VISSIM passes the current state of the vehicle and its 

surroundings to a dynamic link library file (drivermodel.dll), which then 

computes the ‘reaction’ of the vehicles based on this information. VISSIM allows 

some or all vehicles to be modeled with the user-defined drivermodel.dll which 

can specify all driving behaviors based on CAV logic. 

DrivingSimulator.dll Interface 

This interface allows testing of the interaction between externally-controlled 

vehicles or pedestrians in VISSIM (also known as “Human-in-the-Loop” 

simulation). All decisions and calculations of externally-controlled vehicles have 

to be specified, and are based on the reaction to ‘other’ vehicles in the 

simulation. Each vehicle moves through the VISSIM network based on simulator 

instructions, i.e. steering movements, acceleration. Other vehicles ‘react’ to 

what the external vehicle is doing. 
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2.2 Functionality Evaluation of Two External Interfaces 
This evaluation is conducted to assess the capability of the two VISSIM external 

interfaces (COM API and EDM) to control CAV longitudinal and lateral movements. As 

discussed in the previous section, the DrivingSimulator.dll Interface requires a separate 

entity to control the vehicle (for example, a driving simulator) and therefore this 

approach is not examined further. Therefore, only the COM API and EDM are evaluated 

in the following sections. 

2.2.1 COM API 
The data contained in VISSIM can be accessed via the COM API. VISSIM version 

4.0 and later allows for the data to be accessed via the COM API. The VISSIM 

COM API is automatically included when the software VISSIM is installed (but not 

in the Demo version). Starting with VISSIM Version 4.30, COM scripts can be 

called directly from the VISSIM main menu (PTV, 2017).  

The COM API does not depend on a certain programming language. COM objects 

can be used in a wide range of programming and scripting languages, including 

VBA, VBS, Python, C, C++, C#, Delphi, and MATLAB. In this study, Python 3.0 is 

chosen as the programming language for COM API. There are two ways for users 

to access COM API: 

1. Launch VISSIM – go to scripts menu – choose event-based scripts. 

2. Launch Python – build connection between Python and VISSIM – 

Manipulation.  

The second approach is more powerful as it enables the user to have full control 

of VISSIM through COM API. The first approach is useful if the user only requires 

partial functionality and faster operation. For this study we focus on the second 

approach.  

Longitudinal movement control through COM API  

There are three parameters of interest which can be altered in COM API to 

control vehicles’ longitudinal movement: desired speed (the speed the 

vehicle/driver desires to travel at unless the acceleration is bound by vehicle 

dynamics), operating speed (instantaneous speed), and position (vehicle’s 

current location, measured from the beginning of the link it is on).  

The instantaneous acceleration cannot be manipulated directly through the COM 

API. Therefore, three methods of controlling vehicles’ longitudinal movement by 

changing these parameters in COM API are tested and discussed below. To 

conduct the test, we specified a realistic vehicle trajectory (second-by-second 

acceleration, speed, and position for 60 seconds), which assumes constant 

acceleration within each time step. This is used to evaluate how VISSIM executes 



   Evaluation of Advanced Vehicle and Communication 
Technologies through Traffic Microsimulation 

   

21 

 

externally specified trajectories using different approaches. This trajectory is 

called “Specified Trajectory” in the evaluations described below. 

➢ Change Desired Speed 

Desired speed can be changed by using the command: 

“SetAttValue('DesSpeed',Desired_speed_value)”. It changes the vehicle’s desired 

speed, hence the vehicle will adjust its speed gradually to reach that desired 

speed. It leads to the smoothest realistic speed change as the vehicle will move 

in compliance with the VISSIM-defined acceleration function. However, it fails to 

reach the specified trajectory speed instantly, which results in a delay in the 

execution of the specified trajectory.  

➢ Change Speed  

Instant speed change can be implemented with the command 

“SetAttValue('speed',speed_value)”, which changes the vehicle speed instantly 

without considering the acceleration process. 

➢ Change Position 

Changing the position directly can be executed with the command 

“MoveToLinkPosition”. It ignores the speed and acceleration value and moves 

the vehicle directly to the assigned position. This enables perfect position match 

of a vehicle at each time step. However, it presumes that the acceleration and 

deceleration have already been checked and are realistic (i.e. it ignores the 

limitations of vehicle dynamics).  

The results of using these three methods to force vehicles to follow the specified 

trajectory are shown in Figure 2-2 and Figure 2-3. Figure 2-2 has the y - axis as 

position, while Figure 2-3 has the y-axis as speed.  
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Figure 2-2 Position over Time for Three Control Methods 

 

Figure 2-3 Speed over Time for Three Control Methods 
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As shown in Figure 2-2 , the “change position” curve overlaps with the “Specified 

Trajectory” curve, because the “change position” method forces the vehicle to 

follow the assigned trajectory perfectly. However, it ignores the acceleration and 

speed change process. In Figure 2-3, the “change speed” curve overlaps with the 

“Specified Trajectory” curve which indicates that vehicle control via the “change 

speed” method will perfectly follow the assigned trajectory. Similarly, to the 

“change position” method, this method does not consider the 

acceleration/deceleration implications.  

As shown in Figure 2-2 and Figure 2-3, using the “change desired speed” method 

results in a lag  between vehicles’ actual trajectory and the specified trajectory,  

i.e. the curve of “change desired speed” is located to the right of the specified 

trajectory curve).  Using the “change speed” method, enables the vehicle to 

strictly follow the specified speed at every time step. It does not follow the 

specified position as it jumps to the specified speed at the beginning of each 

time step and omits the acceleration process. The “change position” method 

ensures the vehicle reaches the specified trajectory position at every time step, 

but it presumes that the acceleration and deceleration have already been 

checked and are realistic.  

While the “change desired speed” method results in lag time issues, “change 

position” and “change speed” methods do not internally consider acceleration. 

Therefore, unless the trajectory has been developed through different means 

considering realistic acceleration/deceleration values, these methods may not be 

suitable for CAV modeling. 

Lateral movement control through COM API 

The COM API does not enable the direct control of vehicles’ lateral movement. 

The only option COM API provides is to set a desired lane and the vehicle will 

shift to the specified desired lane when it is able. The user could change the 

desired lane of a vehicle via a variable called “DesLane” during the simulation, 

but it may not necessarily lead to an instant lane change if VISSIM determines 

that the vehicle is not able to change lanes.     

Data fetch through COM API 

All data available on VISSIM is accessible through COM API, and the user has the 

option to fetch the data at the network level, i.e. the user could read all the data 

from the VISSIM network, and decide which data to use. 

2.2.2 External Driver Model (EDM) 
The EDM provides the option to replace the internal driving behavior by a fully-

developed user-defined behavior for some or all vehicles in a simulation run. 
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During a simulation run, VISSIM calls the DLL code for each affected vehicle in 

each simulation time step to determine the behavior of the vehicle. VISSIM 

passes the current state of the vehicle and its surroundings to the DLL, and the 

DLL computes the acceleration / deceleration of the vehicle and the lateral 

behavior (mainly for lane changes) and passes these values back to VISSIM to be 

used in the current time step. 

The EDM contains 3 functions which are called from VISSIM: 

DriverModelSetValue, DriverModelGetValue and 
DriverModelExecuteCommand. 

DriverModelSetValue is used to pass a parameter from VISSIM to EDM, 

while DriverModelGetValue makes VISSIM retrieve a parameter from 

EDM. DriverModelExecuteCommand is used to execute commands for 

initializing the simulation, or creating, moving, and removing vehicles from the 

simulation (see below).   

The currently available command constants are DRIVER_COMMAND_INIT, 
DRIVER_COMMAND_CREATE_DRIVER, 

DRIVER_COMMAND_MOVE_DRIVER, and 

DRIVER_COMMAND_KILL_DRIVER.  

DRIVER_COMMAND_INIT is executed once when the simulation starts, and it 

is used to initialize the EDM.  

Several basic parameters are passed to EDM via Set (e.g. time step, vehicle type) 

and several parameters are retrieved from EDM through Get (e.g. 

DRIVER_DATA_WANTS_SUGGESTION which determine if EDM needs a 

suggestion from VISSIM, DRIVER_DATA_SIMPLE_LANECHANGE that 

indicates if a simple lane change is undertaken).  

DRIVER_COMMAND_CREATE_DRIVER is executed whenever a new vehicle 

enters the network in VISSIM. Several Set are called to provide the respective 

values to the EDM.  

The DRIVER_COMMAND_MOVE_DRIVER is executed for every time step as 

long as the vehicle is still in the network. Multiple Set and Get commands are 

implemented for every execution of DRIVER_COMMAND_MOVE_DRIVER.  

Lastly, when a vehicle in VISSIM leaves the network, the 

DRIVER_COMMAND_KILL_DRIVER is implemented, and several parameters 

pass to EDM via Set. 
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Longitudinal movement control through EDM  

Since the vehicle acceleration can be set in EDM, the best way to implement 

specified vehicles’ speed trajectory is by providing suitable values to 

“get(DRIVER_DATA_DESIRED_ACCELERATION)”, which controls the 

vehicle’s acceleration at each time step. The basic steps are as follows:  

1. Construct a vehicle type in VISSIM, check the checkbox "Use external driver 

model” on the tab page “External Driver Model" and select a driver model 

DLL file and optionally a parameter file to be used. 

2. Create a subdirectory DriverModelData\ in the directory of VISSIM.exe to 

avoid a warning message when a simulation run is started. 

3. Set the Simulation Parameters “number of cores” (i.e. processing units) to be 

1 in the VISSIM network, as the EDM needs to confirm that it supports 

multithreading. If it does not, the simulation run is canceled with an error 

message. (It is strongly suggested to set the number of cores to be one for 

simulation parameters; more detailed information is provided in EDM 

instructions (PTV VISSIM, 2016) (page 15). 

4. Set the “Get (DRIVER_DATA_USE_INTERNAL_MODEL)” to be 0 in the 

DrivelModel.cpp file. 

5. The vehicle’s longitude movement then can be controlled by providing the 

relevant value to “Get (DRIVER_DATA_DESIRED_ACCELERATION)”. 

It changes the vehicle’s acceleration for every time step (since acceleration is 

continuously controlled at every time step, the desired speed is overridden). 

The vehicles’ actual acceleration will be the communicated acceleration 

value but bounded by the VISSIM maximum acceleration functions. 

The experiment was implemented and the result shows EDM matches perfectly 

with the designed longitudinal movement. The longitudinal movement for a time 

step can be calculated as (𝑣𝑖−1 ∗ 𝑡𝑠 +
1

2
∗ 𝑎𝑖−1 ∗ 𝑡𝑠

2)  while 𝑡𝑠 is the time step 

length.  

Lateral movement control through EDM  

The EDM enables immediate lane change control. The EDM provides two 

methods to control the vehicles’ lane change behaviors: simple lane change and 

full control lane change. Under the simple lane change mode, the user only 

needs to initiate the lane change (“when” to initiate it), then use VISSIM 

suggested lane change parameter values. However, under the full control lane 

change mode, the user needs to set/calculate the lane change-related 

parameters and provide these to the vehicles (“when” and “how” to conduct the 

lane change). 
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There are some import parameters for lane change control: 

DRIVER_DATA_SIMPLE_LANECHANGE is used to specify whether a simple 

lane change mode is used (set to 1 when using simple lane change mode, 

otherwise 0). DRIVER_DATA_WANTS_SUGGESTION indicates whether 

EDM wants suggestions on control parameter values from VISSIM (set to 1 if 

want suggestions from VISSIM, otherwise 0). 

DRIVER_DATA_ACTIVE_LANE_CHANGE is used to specify the direction of an 

active lane change (+1 = to the left, 0 = none, -1 = to the right). 

DRIVER_DATA_DESIRED_LANE_ANGLE is used to set the desired angle 

relative to the middle of the lane (positive = turning left). 

1. Simple Lane Change: Under this mode, the user only needs to initiate a lane 

change for a vehicle. VISSIM assumes control of the lateral behavior of this 

vehicle while the lane change proceeds and informs the EDM when it is 

completed.  

• Set “Get(DRIVER_DATA_SIMPLE_LANECHANGE)” and 

“Get(DRIVER_DATA_WANTS_SUGGESTION)” to be 1. 

• Set “Get(DRIVER_DATA_ACTIVE_LANE_CHANGE)” to be either 1 

(to left) or -1 (to right) to initiate a lane change. 

• Pass value from “Set(DRIVER_DATA_DESIRED_LANE_ANGLE)” 
and “Set(DRIVER_DATA_REL_TARGET_LANE)” to 

“Get(DRIVER_DATA_DESIRED_LANE_ANGLE)” and 

“Get(DRIVER_DATA_REL_TARGET_LANE)” respectively. 

In this case, the vehicles will take a constant time to accomplish a lane change. 

Therefore, for a vehicle with higher speed, its second-by-second lane change 

angle will be smaller than that of vehicles with lower speed. A current lane 

change cannot be interrupted in the simple lane change mode. By default, the 

vehicles take 3 seconds to finish a lane change (this is the time it takes the 

middle of the vehicles’ front end to reach the middle of the new lane), but extra 

time is needed for vehicles’ middle rear bumper to reach the middle of the new 

lane 

2. Full Control Lane Change:  Users have full control of vehicles’ lane change 

behaviors under this mode. Users are responsible for not only initiating a 

lane change, but also specify when the lane change is completed. Here, the 

lane change is executed by changing the “desired lane angle” parameter 

which allows the users to determine the time taken for lane change. 

• Set “Get(DRIVER_DATA_SIMPLE_LANECHANGE)” to be 0. 

• Set “Get(DRIVER_DATA_ACTIVE_LANE_CHANGE)”, 

“Get(DRIVER_DATA_REL_TARGET_LANE)” and 
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“Get(DRIVER_DATA_DESIRED_LANE_ANGLE)” to the desired 

values to launch a lane change. 

• Set 
“Get(DRIVER_DATA_ACTIVE_LANE_CHANGE)”,“Get(DRIVER

_DATA_DESIRED_LANE_ANGLE)” to be 0 to stop lateral movement. 

When a lane change is launched, these three values should be set to non-zero 

values with the same sign. After the middle of the front end of the vehicle 

reaches the edge of the target lane, set 

“Get(DRIVER_DATA_REL_TARGET_LANE)” to be 0. When the whole 

width of the vehicle is in the new lane, set 

“Get(DRIVER_DATA_ACTIVE_LANE_CHANGE)” to be 0. When a lane 

change is accomplished and the vehicle is straight, set the 

“Get(DRIVER_DATA_DESIRED_LANE_ANGLE)” to be 0. 

In testing these, these common errors were identified: 

• When “Get(DRIVER_DATA_ACTIVE_LANE_CHANGE)” is non-zero, 

then a non-zero value with the same sign needs to be passed to 
“Get(DRIVER_DATA_DESIRED_LANE_ANGLE)”. 

• The value passed to 

“Get(DRIVER_DATA_DESIRED_LANE_ANGLE)” should be large 

enough especially when the speed is low. 

Data fetch through EDM 

The purpose of data fetch in EDM is to provide the vehicle’s current status 

(acceleration, speed, position, etc.) and its surroundings (distance to the signal 

ahead, headway between its leading vehicle, etc.) from VISSIM to EDM. The user 

is only provided the data related to each individual vehicle, hence data fetch 

through EDM is at an individual vehicle level. Therefore, other data may not be 

available for users, e.g. the vehicles along another approach at an intersection.  

2.2.3 Relationship between longitudinal control and lateral movement 
control 
The longitudinal movement is controlled by 

“Get(DRIVER_DATA_DESIRED_ACCELERATION)” exclusively. Changing 

the vehicle’s lateral movement has no influence on the vehicle’s longitudinal 

movement. Besides, the speed value retrieved from VISSIM considers the 

longitudinal movement only. Therefore, longitudinal movement for a time step 

can be calculated as (𝑣𝑖−1 ∗ 𝑡 +
1

2
∗ 𝑎𝑖−1 ∗ 𝑡2)  where t is the time step length.  
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The lateral movement is controlled by 

“Get(DRIVER_DATA_DESIRED_LANE_ANGLE)”. It has no impact on 

longitudinal movement. However, the higher longitudinal speed will enable a 

wider range setting for “Get(DRIVER_DATA_DESIRED_LANE_ANGLE)”. 

In the simple lane change mode, VISSIM assumes constant time (3s) for vehicles 

to finish a lane change. For vehicles with lower speed, the lane change angle will 

be set higher at every time step to enable it to accomplish the lane change 

within the same time. Under fully lateral control mode, the vehicles will adjust 

their lane change angle to follow users’ command.  

Hence, it can be concluded that the lateral movements do not have any impact 

on the longitudinal movement in VISSIM. However, the longitudinal speeds have 

an impact on lane angle and hence the lateral movement. 

2.3  Summary 
VISSIM provides multiple ways for users to simulate CAV operations. AVs can be 

modeled internally In VISSIM by pre-setting certain behavioral parameters to match AV 

behavior. However, connectivity cannot be modeled internally.  

The external interfaces COM API and EDM offer more powerful features. There are two 

main benefits to using COM: first, it provides better scalability and flexibility, e.g., the 

developer could write a function in COM enabling the CV to receive information from 

the infrastructure or other CVs that meets certain conditions (e.g., all vehicles within a 

certain radius). In contrast, the EDM can access the information of several leading and 

following vehicles only. Also, the COM API is easier to use, while the EDM logic and 

programming environment (C ++) are harder to master.  

The COM API cannot control the acceleration (longitudinal movement) and lane 

changing (lateral movement) directly. It provides limited opportunities to control a 

vehicle through setting certain behavioral parameters in VISSIM. This method does not 

produce realistic acceleration. Unless the trajectory has been developed through 

different means ensuring realistic acceleration, this method should not be used. 

The EDM is capable of both longitudinal and lateral movement control. Acceleration 

(longitudinal movement) and lane changing (lateral movement) can be modeled 

directly.  

In the next section, we explore using the combination of COM API and EDM interfaces 

to maintain the longitudinal control of vehicles in VISSIM. We leverage the COM API’s 

ability to access network elements for modeling connectivity and we use EDM to 

implement specified trajectories. 
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3 DEVELOPMENT OF AUTONOMOUS AND CONNECTED 
VEHICLE FUNCTIONALITY IN VISSIM 

As concluded in the previous section, while the COM API can fetch all data available on VISSIM 

lists, it cannot directly control vehicles’ longitudinal and lateral movement. The EDM is capable 

of both longitudinal and lateral control but it has limitations related to data fetching. Therefore, 

it is preferable to use selected features of each interface. 

In this section we explore using the combination of COM API and EDM interfaces to maintain 

the longitudinal control of vehicles in VISSIM simulation. We leverage the COM API’s ability to 

access network elements for modeling connectivity and we use EDM to implement the 

specified accelerations. 

A data fetching function is developed in COM API to acquire the required data from VISSIM (e.g. 

the signal timing and phasing, vehicles speed, acceleration, and positions). The data fetching 

function then feeds that data into a developed COM API CV/AV logic, which generates the 

acceleration for AV/CV (specified acceleration) for the next time step. This can be based on 

autonomous driving logic for AVs or recommended trajectories for CVs. Then the COM API 

outputs the specified accelerations into a txt file, which is read and implemented in VISSIM by 

the EDM in the next time step (Figure 3-1). 

There are two main benefits to using COM: first, it provides better scalability and flexibility, e.g., 

the developer could write a function in COM enabling the CV to receive information from the 

infrastructure or other CVs that meets certain conditions (e.g., all vehicles within a certain 

radius). In contrast, the EDM can access the information of several leading and following 

vehicles only. Also, the COM API is easier to use, while the EDM logic and programming 

environment (C ++) are harder to master.  
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Figure 3-1 Longitudinal Control Framework 

 

3.1 COM API data output function 
As indicated earlier, the COM API has access to all the data available in VISSIM. Example 

data types are shown in VISSIM drop-down menu: “Lists – Results– Vehicles in 

Network”. The data includes the status and characteristics of vehicles that are running in 

the network. Table 3-1 shows some of the attributes critical to this effort that may be 

retrieved from VISSIM through the COM API from this list. These attributes are useful 

for calculating CAV trajectories. Other useful data include signalization and links’ 

attributes.  
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Table 3-1 Retrieved Attributes and their Descriptions (PTV VISSIM, 2016) 

Attributes Descriptions 

No Unique vehicle number 

VehType Vehicle type 

Length Vehicle length 

Lane Number of lane on which vehicles is used 

Pos Distance on the link from the beginning of the link or 

connectors 

Speed Speed at the end of time step 

DesSpeed Desired speed 

Acceleration Acceleration during the time step 

Headway Distance to the preceding vehicle before the time step 

SpeedDiff Relative to the preceding vehicle in the time step 

SimSec Simulation time (sec) 

Other user defined 

attributes 

Users could define their own attribute, which get from 

other build in attributes. 

The process of data fetching is summarized below. 

3.1.1 Launch VISSIM and then load the network and layout files 
First, Python needs to call COM API and launch VISSIM with the command: 

“import win32com.client as com”, ”Vissim= 

com.Dispatch ("VISSIM.VISSIM.1000")”   

Here “1000” is used for VISSIM version 10.  

 The network and layout file will be loaded using the command: 

VISSIM.LoadNet(Filename, flag_read_additionally) 

VISSIM.LoadLayout(Filename) 

The directory of network and layout files need to match those on the computer. 

3.1.2 Set the input parameters 
The user has the option to set input parameters (e.g. vehicle flow rate, vehicle 

composition) through COM API or in VISSIM directly. The example code in 

Appendix A shows how to set vehicle flow rate (veh /hr), vehicle composition 

(CNVs as type “100” and connected vehicles (CAV) as type “630”), desired speed, 

and relative flow (relative share of each vehicle type in the vehicle composition).  
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3.1.3 Set the categories and frequency of output data 
The vehicle- related data from VISSIM can be accessed with: 

 “Vissim.Net.Vehicles.GetMultipleAttributes 
(“Attribute of selection”)” 

Users can go to the VISSIM lists and find the corresponding attributes names. In 

our example code (Appendix A), vehicle ID, vehicle type, vehicle length, vehicle’s 

front bumper’s coordinate, vehicle’s rear bump’s coordinate, acceleration, and 

the distance from preceding vehicle are selected as the output. Those data are 

output in the .csv format at a selected frequency. In addition, there is another 

output file in .txt format, the specified accelerations file, in which only the 

vehicle ID and their corresponding acceleration are written. That file is then read 

by EDM. 

3.1.4 Find the connected vehicles within certain radius 
We have also developed a function (Appendix A) to acquire the information of 

surrounding CAVs from a CAV within a certain radius. The radius may be 

calculated based on the coordinates of a vehicle’s front bumper or rear bumper. 

3.2 EDM speed trajectory implementation 
As discussed in section 2, EDM is suitable for longitudinal and lateral control. In this 

study we have developed an innovative longitudinal control framework. In each time 

step, instead of performing the car-following model calculations within EDM we use 

COM to collect all needed information and calculate the next acceleration value for the 

given vehicle(s). COM writes the accelerations to a txt file. In the EDM, a function has 

been created to read the text file and find the specified acceleration corresponding to a 

subject vehicle CAV ID. The EDM reads and then implements the specified acceleration 

(Figure 3-1).  

3.3 Summary 
In this section, a longitudinal movement control framework was developed, which uses 

both the COM API and the EDM. The COM API retrieves the necessary data and feeds 

these to the AV/CV logic. It then outputs the specified accelerations obtained from the 

AV/CV logic to a txt file. The EDM then reads the txt file and assigns the acceleration to 

the corresponding vehicle ID.  

In the next section, we incorporate existing AV and CV algorithms for an isolated 

intersection into VISSIM. We evaluate the effectiveness of the simulation extensions to 

control vehicle trajectories and to represent CAVs. We evaluate the control algorithm by 

testing various scenarios varying the demand and market penetration of vehicles. 
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4 CAV MODELING AND SIMULATION 
A vehicle longitudinal control framework was developed and described in the previous section, 

which makes use of the selected features of COM API and EDM. In this framework (Figure 3-1), 

the following actions occur during each step: 

1. A COM-based data fetching function accesses the required data (vehicle’s ID, type, 

position, headway, presence of lead vehicle or signal downstream, signal state etc.) in 

the VISSIM simulation during each time step. 

2. The COM API provides the data to the CV/AV logic, which generates an acceleration for 

the CAV.  

3. The COM API outputs the resulting acceleration into a .txt file, which is read and 

implemented in VISSIM by EDM.  

As discussed in previous sections, EDM is more suitable for longitudinal and lateral 

control. In COM, a function is created to find the estimated acceleration corresponding 

to a CV/AV. In the EDM, a function is written to read the estimated acceleration 

corresponding to a CV/AV from the specific acceleration text file. The vehicle’s longitude 

movement is then controlled by EDM by providing this estimated acceleration value to 

VISSIM through the command: 

 

 “Get (DRIVER_DATA_DESIRED_ACCELERATION)”.  

 

The vehicle’s acceleration is updated every time step. The implemented acceleration is 

the communicated acceleration value but bounded by the VISSIM’s maximum 

acceleration function for the given vehicle model. 

4. Utilizing both the COM API and EDM overcomes the disadvantages of both, creating a 

more robust platform of CAV modeling.  

In this section, an AV model and a CV model are selected from the literature and implemented 

with the longitudinal control framework developed in the previous section.  

Three simulation networks are built with a mix of: 

i. AV and CNV 

ii. CV and CNV   

iii. CAV and CNV 

In the following sections, the AV, CV, and CAV models simulated are discussed along with the 

relevant simulation details and results. 
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4.1 AV Model 
In this implementation, a car-following model developed by (Talebpour & Mahmassani, 

2016) is used to replicate the AV logic. The AV logic uses a modified version of the 

Intelligent Driver Model (IDM) with parameters based on (Van Arem, Van Driel, & Visser, 

2006) to represent the response of an AV. The model uses three regimes: car following 

(when a lead vehicle is present), deceleration mode (when the vehicle needs to slow 

down for a static object such as a red signal), and free driving mode.  

When making right or left turns in VISSIM, vehicles must pass through simulation 

objects called “connectors”. Gap acceptance models are required while using 

connectors making turns. We have not developed a gap acceptance model, hence the 

driver behavior control is given back temporarily to VISSIM when the AVs need to make 

a turn.  

The following sub-sections discuss these aspects of AV movement logic implementation: 

• Initial settings in VISSIM to enable AV modeling 

• AV movement model implementation through COM API (Figure 4-1, right part) 

• Real-time acceleration implementation through EDM (Figure 4-1, left part). 

4.1.1  Initial settings in VISSIM 
In VISSIM, an important user-defined attribute needs to be set: 

“DistanceToSigHead” is a “Vehicles in Network” object which shows the 

distance from the vehicle to the signal downstream on the current lane. This 

value becomes zero once the vehicle passes through the signal head. This helps 

associate vehicles to the downstream signal.  

The following equation determines this parameter:  

“IF(([LANE\MIN:SIGHEADS\POS]=0) | ([POS]>[LANE\MIN:SIGHEADS\POS]),0, 

[LANE\MIN:SIGHEADS\POS]-[POS])”.  

VISSIM 10 does not provide a separate vehicle type for AVs. The “AV” category 

needs to be defined under the “vehicle types” tab in VISSIM. For this vehicle 

type, under the car following behavior option, the EDM with “DriverModel.dll” 

file needs to be selected. This “.dll” file is the mechanism through which 

estimated accelerations are communicated to VISSIM. 
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Figure 4-1 Flowchart of AV Logic Implementation 
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4.1.2 AV Model implementation in COM API 
During each time step, the COM API reads traffic data from VISSIM. The traffic 

data are extracted with the command:  

“VISSIM.Net.Vehicles.GetMultipleAttributes(('No', 

'VehType', 'length', 'Acceleration', 'Speed', 'Pos', 

'Hdwy', 'LeadTargNo', 'LeadTargType', 'DistanceToSigHead', 

'SignalState','Lane')) “ 

Where, 

“No”  is the vehicle’s ID 

“VehType”  is the vehicle type 

“Pos”  is the vehicle’s current position from the start point of 

its current lane (in meters) 

“Hdwy”  is the headway distance from its leading vehicle (in 

meters) 

“LeadTargNo”  is the ID of leading target (it could be ID of signal 

heads, vehicles, etc).  

“LeadTargType”  is the leading target type (if it is a vehicle, signal head 

etc.) 

 “SignalState”  is the state of leading signal (green, yellow, red). 

 

If the vehicle type is an AV, then based on the car following regime that the 

vehicle data fits into, COM API adopts one of four modes to calculate the 

acceleration of each AV for the next time step. For each time step and for each 

vehicle ID, the calculated acceleration is stored in a “.txt” file. The following sub-

sections detail each mode. 

Car-following (Talebpour & Mahmassani, 2016) 

The “car-following mode” is executed if the closest leading target is a vehicle. 

The acceleration calculation for a vehicle mainly considers two elements: safety 

constraints and vehicle movement.  

• The following equation calculates the distance the AV should keep from 

the leading vehicle if the leading vehicle decelerates at its maximum 

deceleration level: 

 
∆𝑥𝑛 = (𝑥𝑛−1 − 𝑥𝑛 − 𝑙𝑛−1) + 𝑣𝑛𝜏 +

𝑣𝑛−1
2

2𝑎𝑛−1
𝑑𝑒𝑐𝑐 

(1) 

 

 

Where: 

Subscript n and n-1 represent the AV and its leader 

𝑥𝑛 is the location of vehicle n 
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𝑙𝑛 is the length of vehicle n 

𝑣𝑛 is the speed of vehicle n 

𝜏  is the reaction time of vehicle n   

𝑎𝑛
𝑑𝑒𝑐𝑐 is the maximum deceleration of vehicle n 

𝑣𝑙𝑖𝑚𝑖𝑡  is the speed limit of the road  

 

In this study, 𝜏 = 0.1s, 𝑎𝑛
𝑑𝑒𝑐𝑐 = −6𝑚/𝑠2 , 𝑣𝑙𝑖𝑚𝑖𝑡= 20 mph 

• The following equation provides the safe space headway, considering the 

minimum of safe distance and sensor detection range ( a distance of 300 

m was used). It assumes that there is a vehicle at a complete stop outside 

of the sensors’ detection range, which cannot be detected by the sensors 

at the time of decision-making: 

 

∆𝑥 = min{𝑆𝑒𝑛𝑠𝑜𝑟 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑛𝑔𝑒, ∆𝑥𝑛} 
 

(2) 

• This equation calculates the maximum safe speed (𝑣𝑚𝑎𝑥) considering 

both the safe distance and maximum deceleration: 

 

𝑣𝑚𝑎𝑥 =  min (√−2𝑎𝑛
𝑑𝑒𝑐𝑐∆𝑥, 𝑣𝑙𝑖𝑚𝑖𝑡) 

 

(3) 

• This equation shows the movement model that considers the 

acceleration of the leading vehicle, the speed difference between the AV 

and the leading vehicle, and the difference between the real headway 

and reference headway 𝑆𝑟𝑒𝑓:  

 

 𝑎𝑛
𝑑(𝑡) = 𝑘𝑎𝑎𝑛−1(𝑡 − 𝜏) + 𝑘𝑣(𝑣𝑛−1(𝑡 − 𝜏) − 𝑣𝑛(𝑡 −  𝜏)) + 𝑘𝑑(𝑆𝑛(𝑡 −  𝜏) − 𝑆𝑟𝑒𝑓) 

 

(4) 

Where: 

𝑆𝑛  is the spacing  

𝑆𝑟𝑒𝑓  is the minimum of: Minimum distance (𝑆𝑚𝑖𝑛), Following distance 

based on the reaction time (𝑆𝑠𝑦𝑠𝑡𝑒𝑚), or Safe following distance 

(𝑆𝑠𝑎𝑓𝑒).  

𝑎𝑛
𝑑  is the acceleration of vehicle i 

𝑘𝑎, 𝑘𝑣 , and 𝑘𝑑  are model parameters.  

 

Based on the recommendations of Van Arem et al. (2006), 𝑘𝑎 = 1.0, 𝑘𝑣 = 0.58, 

𝑘𝑑 = 0.1. In this study, the minimum distance (𝑆𝑚𝑖𝑛) is set at 2.0 m. 

 



   Evaluation of Advanced Vehicle and Communication 
Technologies through Traffic Microsimulation 

   

38 

 

The following equations calculate 𝑆𝑠𝑦𝑠𝑡𝑒𝑚and 𝑆𝑠𝑎𝑓𝑒:  

 

𝑆𝑠𝑎𝑓𝑒 =
𝑣𝑛−1

2

2
(

1

𝑎𝑛
𝑑𝑒𝑐𝑐 −  

1

𝑎𝑛−1
𝑑𝑒𝑐𝑐) 

 

(5) 

𝑆𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑣𝑛𝜏 

 

(6) 

𝑆𝑟𝑒𝑓 = min ( 𝑆𝑠𝑎𝑓𝑒 , 𝑆𝑠𝑦𝑠𝑡𝑒𝑚, 𝑆𝑚𝑖𝑛) 

 

(7) 

𝑎𝑛(𝑡) = min( 𝑎𝑛
𝑑(𝑡), 𝑘(𝑣𝑚𝑎𝑥 − 𝑣𝑛(𝑡), 𝑎𝑐𝑜𝑚𝑓 ) 

 

(8) 

Where, 

k   is a model parameter 

𝑎𝑐𝑜𝑚𝑓     is the comfortable acceleration level 

 

In this study, 𝑘 = 1.0, and 𝑎𝑐𝑜𝑚𝑓  is assumed to be 2.5 𝑚/𝑠2. 

 

Deceleration mode 

The deceleration mode is executed when the closest object to a vehicle is a 

signal head with a red or yellow indication, and the vehicle is approaching it.  

• The following equation calculates the distance to stop 𝑆𝑑, i.e., the 

distance required for the vehicle to come to a complete stop if it 

decelerates at a comfortable deceleration 𝑎𝑐𝑜𝑚𝑓
𝑑𝑒𝑐𝑐 : 

 
𝑆𝑑 =

1

2

𝑉𝑛(𝑡)2

𝑎𝑐𝑜𝑚𝑓
𝑑𝑒𝑐𝑐  

 

(9) 

Where, 

 𝑆𝑑   is the acceleration distance, 

 𝑎𝑐𝑜𝑚𝑓
𝑑𝑒𝑐𝑐    is the comfortable deceleration rate assumed to be  

−3.5𝑚/𝑠2.  𝑎𝑛(𝑡) if the distance to signal is less than distance to 

stop 𝑆𝑑 .  

 

VISSIM control mode 

When neither of the two aforementioned situations occur (i.e., the vehicle is not 

influenced by a leading vehicle nor by a signal) and the vehicle is making a right 

or left turn, it has to pass through a simulation object called a “connector”.  
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Gap acceptance models are required while using connectors making turns. We 

have not developed a gap acceptance model, hence the driver behavior control 

is given back temporarily to VISSIM when the AVs need to make a turn. In this 

case, the vehicle will use the VISSIM suggested acceleration for the next time 

step and until it exits the connector.  

Free driving mode 

When the vehicle is not impacted by a leading vehicle, a leading signal, or 

turning, then the “Free driving” mode is implemented. In this case the vehicle 

will aim to maintain or reach the desired speed. Acceleration is estimated as: 

 𝑎𝑛(𝑡) =  𝑘(𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝑣𝑛(𝑡)) (10) 

Where 𝑘 is the desired change rate, assumed to be 1 is used in this study. 

This acceleration value is subject to VISSIM’s vehicle dynamics model and its 

constraints.  

4.1.3 Acceleration implementation through EDM 
During every time step, the VISSIM suggested acceleration is stored in the 

variable “desired_acceleration”,   through this command: 

“case DRIVER_DATA_DESIRED_ACCELERATION : 

desired_acceleration = double_value;” 

A function is written to check whether a vehicle ID is contained in the first 

column of the acceleration “.txt” file. If yes, then the vehicle will use the 

acceleration from the .txt file. If no, then it will use the VISSIM suggested 

acceleration (Figure 4-1 left part).  

 

4.2 CV Model 
The same longitudinal control framework used for AVs is used in the implementation of 

CV logic. An Infrastructure-to-Vehicle (I2V) application (PTV, 2017) allowing the CVs to 

access signal timing information is used to replicate the CV logic. The CV logic (as 

developed and recommended by VISSIM) seeks to maximize the likelihood of arrival-on-

green by changing a vehicle’s speeds within certain bounds.  

It must be noted here that the “CVs” in VISSIM application example always follow the 

advice while a true CV would make a choice depending on the driver. This could be 

modeled by using a factor for driver compliance. In this implementation however, 

VISSIM logic is used “as-is”. 
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In this case, the CV’s acceleration is constrained by both the CV model and the VISSIM 

default car following model. During each time step, the CV receives Signal Phasing and 

Timing (SPaT) information. The speed of the CV for the next time step is calculated 

based on the signal status as follows: 

1. If the signal ahead is green: The CV first compares its desired speed with the 

minimum speed required to arrive at the intersection before this green phase ends 
(minSpeedForGreenEnd) 

1.1 If the desired speed is greater than “minSpeedForGreenEnd”, the vehicle 

will maintain its current desired speed. 

1.2 If the desired speed is less than “minSpeedForGreenEnd”, the vehicle 

compares the desired speed with the maximum speed to arrive at the intersection 

after the next green start (maxSpeedForGreenStart). The desired speed is 

chosen as the lower one between the current desired and 
“maxSpeedForGreenStart”.  

2. If the signal ahead is red the same logic as 1.2 is used. The acceleration is then 

calculated based on the difference between the current speed and the desired speed. 

The CV model implementation is discussed in the following sub-sections: 

• Initial settings in VISSIM to enable CV modeling 

• CV model implementation through COM Application Programming Interface  

(Figure 4-2, right part) 

• Real-time acceleration implementation through EDM  (Figure 4-2, left part) 

4.2.1  Initial settings in VISSIM 
In addition to the settings in AV implementation, the following user-defined 

attributes are created: 

• “GreenEnd” is an input attribute which defines the cycle second a particular 

signal group switches from green to amber. 

• “GreenStart” is an input attribute which defines the cycle second a 

particular signal group switches to green. 

• “TimeUntilNextGreen” calculates the time until the next green phase 

starts (this is applicable only for pre-timed control), considering the cycle time 

and the GreenStart & GreenEnd. 

• “TimeUntilNextRed” calculates the time until the next red phase starts, 

considering the GreenStart & GreenEnd. 
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Figure 4-2 Flowchart of CV Logic Implementation 
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• “SpeedMaxForGreenStart” calculates the maximum speed to arrive at the 

next green start. If the vehicle drives faster, it would arrive at the signal before 

the next green time. 

• “SpeedMinForGreenEnd” calculates the minimum speed to arrive before 

the next green end. If the vehicle drives slower, it would not make it in the 

current/next green time. 

4.2.2  CV Model implementation in COM API 
The model implementation considers the following rules: 

• If the signal ahead is in green, the COM API first calculates if it is possible to 

arrive at the intersection within the current green phase, by comparing 

SpeedMinForGreenEnd with desired speed (𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑).  

• If 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 > SpeedMinForGreenEnd, then 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 will remain the same 

and the vehicle could pass through the intersection during the current green 

phase at the current desired speed.  

• If 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 < SpeedMinForGreenEnd, or the signal ahead is red, then COM 

API will compare 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 with SpeedMaxForGreenStart, to check if the 

vehicle needs to decelerate to arrive after the next green phase start.  

• 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = min ( 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑, SpeedMaxForGreenStart).  

• After 𝑣𝑑𝑒𝑠𝑖𝑟𝑒𝑑 for each vehicle is determined, equation (10) is used to calculate 

its acceleration.  

4.2.3 Acceleration implementation through EDM 
The acceleration implementation through EDM for CVs is the same as for AVs, 

with one difference (Figure 4-2, left part). When the EDM finds the vehicle ID in 

the acceleration “.txt” file, it compares the estimated acceleration to the VISSIM 

suggested acceleration, and uses the lower one (i.e. the vehicle is restricted by 

both the VISSIM car-following model and the CV logic). 

4.3 CAV Model 
The CAV logic combines the AV logic and the CV logic, by replacing the VISSIM car-

following model with the AV car-following model in the CV logic. The CAV acceleration is 

then constrained by both the AV car-following model and the CV model.  

Note that the two red boxes in Figure 4-3 which are the AV logic and the CV logic, are 

the same as the red boxes in Figure 4-1 and Figure 4-2 respectively. The “Merge vehicle 

ID array and acceleration array” process is used to make CAVs follow the lower 

acceleration value of the acceleration outputs from the AV logic and the CV logic. The 

following rules apply: 
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• Initial settings in VISSIM: VISSIM settings of CAVs are exactly the same as for CVs, 

except that the user should create a vehicle type for CAV and select EDM to 

control it. 

 

• CAV model implementation in COM API: The acceleration calculation combines 

the AV logic and the CV logic ( 𝑎𝑛(𝑡) = min(𝑎𝑛(𝑡)𝑎𝑣, 𝑎𝑛(𝑡)𝑐𝑣) )  

 

The CAV uses the AV model for the car-following behavior unless a slower speed 

(or acceleration) would allow for the vehicle to arrive on green, the boundary 

condition set by the CV algorithm.   

 

• Acceleration implementation through EDM: This is the same as for CVs.  
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Figure 4-3 Flowchart of CAV Logic Implementation 
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4.4 Simulations  

The AV and CV models described above were implemented through the COM API and 

several simulations were run with different combinations of leader and follower vehicles 

in VISSIM Version 10.0.  These vehicles were inserted at different times during the signal 

cycle to demonstrate and check the implementation of the logic. 

Figure 4-4 shows the results of one such test with the trajectories of a pair of vehicles 

approaching the stop bar of a signalized intersection. The upstream end of the road 

segment is 500 ft from the stop bar. When the lead vehicle enters the detection range 

there are 10 seconds of green remaining. 

In Figure 4-4 (a) the lead vehicle is a CNV and the follower a CV.  The CNV maintains its 

speed at the speed limit (20 mph) until it approaches the stop bar, and then it 

decelerates to a complete stop. The CV (the follower) receives the information that the 

green phase ends soon and it does not have time to cross the stop bar. Hence it slows 

down and reaches a lower speed, cruising until the next green, and accelerating later to 

cross the intersection.  

In Figure 4-4 (b) the lead vehicle is a CV and the follower a CNV. The leader CV 

decelerates, cruises and then accelerates to cross the intersection during the next 

green. The CNV does not have this information and aims to achieve its desired speed, 

exhibiting oscillation when following the CV which maintains a lower cruising speed.  

In Figure 4-4 (c) both vehicles are CVs.  Therefore, they both exhibit the same behavior, 

and they decelerate to a lower cruising speed before accelerating to cross the 

intersection during the next green. In this scenario, the following CV does not exhibit 

any oscillations since both leader and follower are CVs that follow the same trajectory 

pattern.  

The research team conducted several similar tests with vehicle arrivals throughout the 

cycle, to ensure the individual vehicles behaved as expected.  Next, we simulated a four-

leg isolated signalized intersection. The research team replicated the signalized 

intersection of Gale Lemerand Drive and Stadium Road in Gainesville, Florida. 

The following sections describe the network layout, simulation scenarios and results. 
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(a) Leader- CNV, Follower-CV 

(b) Leader- CV, Follower-CNV 

(c) Leader- CV, Follower-CV 

Figure 4-4 Trajectories of Leader and Follower Vehicles 
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4.4.1 Simulation network layout 
Figure 4-4 provides the study intersection layout. The speed limit is 20 mph for 

all approaches. Each approach has two lanes with an exclusive left turn bay and a 

shared lane for through and right turning traffic. Figure 4-5 provides the network 

modeled in VISSIM. The width of lanes and the length of the left turn bays were 

measured using Google maps. 

 

 

Figure 4-4 Network Layout 
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Figure 4-5 Network Layout in VISSIM 

4.4.2  Simulation scenarios 
To understand the impact of CAVs on traffic operations, different penetration 

rates of AV, CV, or CAV under different v/c ratios were replicated. Eighteen 

scenarios were designed with different combinations of v/c ratio and 

penetration rate for AV, CV, and CAV each (Table 4-1). 

 

Table 4-1 Simulation Scenarios 

Penetration Rate → 

v/c  ↓ 
0 0.2 0.4 0.6 0.8 1.0 

0.7       

0.85       

0.9       
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4.4.3  Simulation signal phasing and timing 
Table 4-2 shows the turning movement flows used in the simulation. For 

simplicity, the total volume of vehicles and the ratio of turning movements from 

each approach is kept the same. The ratio is set at 60:30:10 for through, right-

turns and left-turns, respectively.  

Table 4-2 Turning Movements (same for all approaches) 

v/c 
Flow rate (veh / h) 

L T R Total 

0.9 61 365 182 608 

0.85 57 344 172 573 

0.7 47 284 142 473 

 

Based on the field data collection, the simulated intersection uses two-phase 

operation with permitted left-turns. Optimal cycle length times were calculated 

using the HCM6 and rounded to the nearest second, with a min allowable cycle 

of 60 seconds. The signal phasing and timings used are shown in Table 4-3. As 

shown, the green and amber durations are the same for both phases.  

Table 4-3 Signal Timings 

𝒗/𝒄 𝑪𝒐𝒑𝒕 (s) 
Cycle length 

used (s) 

Green time for 

each phase (s) 

Amber time for 

each phase (s) 

0.9 110 110 52 3 

0.85 73.33333 74 34 3 

0.7 36.66667 60 27 3 

 

4.5  Results 
As shown in Table 4-1, 18 scenarios were developed to replicate various market 

penetrations for each vehicle type (AV, CV and CAV). Each of these 54 scenarios (18*3) 

were simulated 5 times with different random seeds. The same 5 random seeds were 

used across all scenarios to ensure the same traffic arrival pattern for different vehicle 

types (AV, CV, CAV). 

Average travel speed (mph) and average delay (s/veh) for the entire network were 

obtained for each scenario, and these are shown in Figure 4-5 and Figure 4-6 (detailed 

results are provided in Appendix B). The following are concluded from the simulation 

runs: 
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• Increasing penetration rates of CAVs resulted in reductions in delay. Scenarios 

with CAVs showed the highest delay reduction compared to AVs and CVs alone 

(Figure 4-6). 

• Scenarios with AVs result in better performance at lower traffic volumes (when 

v/c is 0.7 and 0.85) than the respective scenarios with CVs, as indicated by higher 

average speed and lower average delay (Figure 4-5 and Figure 4-6). However, the 

scenarios with CVs show better network-wide performance than those with AVs 

at higher demands (i.e., for v/c = 0.9). 

• The improvements in delay could be attributed to three factors; The reduction in 

start-up lost time, acceleration of CVs according to the information received and 

reduction in driver reaction time. 

• The results show that a combination of the two technologies (i.e. autonomy and 

connectivity) yields better performance than each (CV and AV) on their own.  

While the simulations show improvement in traffic operational performance, it is also 

important to consider the environmental impact. In the next section we use the 

simulation outputs to run an emissions model and evaluate these for each scenario. 
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Figure 4-6 Average Network Speeds for Different Penetration Rates of CAVs 
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Figure 4-7 Average Network Delay for Different Penetration Rates of CAVs 
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5 EMISSIONS MODELING 
5.1 Introduction  

In this section, we further explore the VISSIM CAV implementation discussed thus far in 

this report and some of the analysis that may be performed on the real-time data 

streams. The following sections of this chapter provide a brief insight into the network 

and the trajectory data produced by VISSIM as well as the methodology for processing 

the trajectory data to calculate several Key Performance Indices (KPIs). Two of the KPIs, 

CO2 emissions and travel-time, are discussed in this report. Finally, the methodology is 

applied to several CAV scenarios, with varying demand levels and penetrations rates, 

providing a comparative analysis of the calculated KPIs. 

5.2 Network and Data Information 
In this implementation, the four-leg isolated signalized intersection at Stadium Rd. @ 

Gale Lemerand Dr., FL, is modelled in VISSIM. The network extends 1,405ft along the 

East-West direction (Stadium Rd) and 1,087ft along the North-South direction (Gale 

Lemerand Drive). To evaluate the effect of CAV technologies on network environmental 

metrics, several traffic scenarios are run: demand levels of v/c=0.7 and v/c=0.9, and 

technology penetration rates of 0% to 100%, at 20% increments.  

Trajectory data, i.e., vehicular position over time, is collected for all vehicles during each 

simulation run and is utilized as the fundamental data for the KPI calculations. For the 

analysis, the roadway is divided into sections, with each section start and end point 

labeled as a counter. Figure 5-1 schematically shows the counter placement for different 

chosen routes in the network. The location of the counters for measuring and 

comparing KPIs are chosen such that they satisfy the following criteria: 

(1) Allow for KPI calculations to reflect operations on both the mainline and side street 

roadways. In this analysis Stadium Road Eastbound (EB) and Gale Lemerand Dr 

Northbound (NB) are studied. 

(2) Limit initial analysis to through vehicle movements. Turn movements are not 

included in the current KPIs. 

(3) Capture the entire queue lengths. Thus, starting counters are placed at least 300 

feet upstream from the stop-bars in all directions. Based on a review of the 

simulation runs, 300 feet was found sufficient for the given scenarios. 

(4) Reflect the result of queuing at the stop bar and the effects of acceleration after the 

stop bar. Thus, segment end point counters are placed at the stop-bar and at points 

sufficiently downstream of the stop bar for vehicles to have reached their desired 

travel speed. 
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Figure 5-1 Schematic Representation of EB-Through and NB-Through and their Respective 
Counters 

5.2.1 AV and CV Logic implemented in VISSIM 
As seen earlier, a model from (Talebpour & Mahmassani, 2016) was used to 

replicate Autonomous Vehicle (AV) logic. This logic assumes that an AV will have 

information about all vehicles within its sensor range. The AV logic uses a 

modified version of the Intelligent Driver Model (IDM) with  the parameters 

being set based on (Van Arem et al., 2006) to represent the response of an AV. 

An Infrastructure to Vehicle (I2V) application (Evanson, 2017) allowing the CVs to 

access signal timing information was used to replicate CV logic. The CV logic 

seeks to maximize the likelihood of arrival-on-green by changing a vehicle’s 

speeds within certain bounds. Both AV and CV scenarios were implemented 

separately at different levels of penetration, as well as a CAV scenario which 

implements both the AV and CV logic. For each penetration rate and demand 

level, a one-hour VISSIM run is executed. Trajectory data are extracted at 10 Hz 

for all vehicles present in the network. The VISSIM trajectory file contains the 
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number ID, length, speed, acceleration, front-coordinates, rear-coordinates, and 

headway for every vehicle, every 0.1 simulation second, for the entire simulation 

hour. Figure 5-2  shows a screenshot of the initial part of one such trajectory file. 

Five VISSIM runs were replicated for each demand-penetration scenario by 

changing random seeds. 

 

Figure 5-2 Screenshot of Initial Lines of a Trajectory File from A VISSIM Run (AV Data: 40% 
penetration, v/c=0.7, random seed=1) 

5.3 Data Processing Methodology 
Comparative KPI analysis across different scenarios was performed on two quantities, 

travel-time, and total vehicular Carbon Dioxide (CO2) emissions, which is estimated 

using EPA's Motor Vehicle Emission Simulator (MOVES) model for the 2017 fleet mix. 

The EPA’s MOVES Model (Agency U.S.E.P, n.d.) estimates vehicle energy consumption 

and emissions given the vehicle’s speed and acceleration. Additional details on the 

methodology of using MOVES emissions estimator model in this analysis, are provided 

later. The MOVES model is applied at a 1 Hz rate, thus the 10 Hz trajectory data is 

aggregated to 1 Hz. For this project median speed for every ten records of each vehicle 

is used, condensing the 10 Hz data to 1 Hz (i.e., second-by-second). Other methods 

could be selected for aggregating to a 1 Hz rate, such as mean speed or every tenth data 

point; however, some initial comparisons showed minimal difference. Median speed 

was selected as it provides some smoothing of the 10 Hz data while still allowing for fast 

runtimes, which is critical for real-time applications as discussed elsewhere (Saroj, Roy, 

Guin, Hunter, & Fujimoto, 2019). The individual vehicle acceleration is derived from the 
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difference in consecutive median speeds in the condensed trajectory data. The second-

by-second speed-acceleration data are entered into MOVES to estimate emissions each 

second for each vehicle. For this analysis, the second-by-second vehicle front-

coordinates are utilized to select vehicles that complete the entirety of the EB-Through 

or NB-Through routes. For each direction, the total number of seconds for a vehicle to 

travel between counters is recorded, which represents the vehicle travel time. In a 

similar manner, the total vehicle emissions for a trip was calculated by adding the 

emission data for every second of the trip between each pair of counters. The 

calculation of travel-time and emissions was implemented using Python 3.7 (Python, 

2018); (Numpy, 2020). Figure 5-3 depicts the overall architecture for the analysis 

procedure. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Before proceeding with the analysis and the results discussion, we briefly describe the 

emission estimation technique using MOVES.  

5.3.1  Energy and Emission Estimation using MOVES 
The initially condensed 1 Hz trajectory data are processed to estimate emissions 

using MOVES. The MOVES process of estimating vehicular energy and emissions 

is developed and mandated by the US Environmental Protection Agency (USEPA) 

(Guensler et al., 2017). At every one-second time-step an individual vehicle’s 

speed and acceleration is used to calculate Vehicle Specific Power (VSP) for each 

vehicle. The speed, acceleration, and VSP is then used to identify the operating 
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Figure 5-3 Architecture for KPI Calculation and Route Allocation from Trajectory Data 
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mode bin. A combination of the bin-number and vehicle type is then utilized to 

estimate the energy consumption and emissions (CO2, NOX, etc.). Aggregation 

across vehicles and time-steps is used to obtain the hourly rates. The individual 

elements of this procedure are described in more detail in the following 

subsections. 

5.3.1.1 Vehicle Specific Power (VSP) Calculation:  

VSP (or STP) is a function of vehicle mass, dynamics parameters, speed, 

acceleration, road grade (if available), and gravitational acceleration. 

𝑉𝑆𝑃/𝑆𝑇𝑃 = (
𝐴

𝑀
) 𝑣 + (

𝐵

𝑀
) 𝑣2 + (

𝐶

𝑀
) 𝑣3 + (

𝑚

𝑀
) (𝑎𝑐𝑐 + 𝑔 ∗ sin 𝜃)𝑣 (1) 

Where: 

𝑉𝑆𝑃 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑜𝑤𝑒𝑟 (
𝑘𝑊

𝑡𝑜𝑛𝑛𝑒
, 𝑝𝑜𝑤𝑒𝑟 𝑡𝑜 𝑤𝑒𝑖𝑔ℎ𝑡 𝑟𝑎𝑡𝑖𝑜), 

𝑆𝑇𝑃 = 𝑠𝑐𝑎𝑙𝑒𝑑 𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 (𝑘𝑊/𝑡𝑜𝑛𝑛𝑒) 

𝑣 = 𝑠𝑒𝑐𝑜𝑛𝑑-𝑏𝑦-𝑠𝑒𝑐𝑜𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑚/𝑠𝑒𝑐 

𝑎𝑐𝑐 = 𝑠𝑒𝑐𝑜𝑛𝑑-𝑏𝑦-𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛,
𝑚

𝑠𝑒𝑐2
 

𝑔 = 𝑔𝑟𝑎𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛(9.81 𝑚/𝑠𝑒𝑐2) 

𝜃 = 𝑟𝑜𝑎𝑑 𝑔𝑟𝑎𝑑𝑒(𝑟𝑎𝑑𝑖𝑎𝑛𝑠 𝑜𝑟 𝑑𝑒𝑔𝑟𝑒𝑒𝑠, 𝑎𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑  

𝑏𝑦 𝑡ℎ𝑒 𝑠𝑖𝑛 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚) 

𝑚 = 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠 (𝑡𝑜𝑛𝑛𝑒𝑠) 

𝐴 = 𝑟𝑜𝑙𝑙𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑘𝑊-𝑠𝑒𝑐/𝑚) 

𝐵 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑘𝑊-𝑠𝑒𝑐2/𝑚2) 

𝐶 = 𝑎𝑒𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑑𝑟𝑎𝑔 (𝑘𝑊-𝑠𝑒𝑐3/𝑚3) 

𝑀 = 𝑓𝑖𝑥𝑒𝑑 𝑚𝑎𝑠𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑦𝑝𝑒 (𝑡𝑜𝑛𝑛𝑒𝑠) 

A, B, C, M, and m are predetermined constants that vary depending on 

the type of vehicle (Passenger Car, Single Unit, Bus, Trailer Truck, etc.) 

(Zhai, Frey, & Rouphail, 2008). 

 

5.3.1.2 VSP Operating Mode Bin using Speed, Acceleration, and VSP:  

A combination of VSP, speed, and acceleration are used to determine the 

operating mode for each second of vehicle operation. Each operating 

mode corresponds to an ID (VSP bin) which then directs to a lookup table 

that provides an estimate of energy consumption or vehicular emissions. 

The VSP operating mode bins are assigned as given in Table 5-1  below 

(Guensler et al., 2017). 
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Table 5-1 MOVES VSP/STP Operating Mode Bins 

Operating 
Mode ID 

Operating Mode 
Description 

Vehicle 
Specific Power 
(VSP) 

Vehicle Speed 
Vehicle 
Acceleration 

(KW/tonne) (vt, mph) (a, mph/sec) 

0 Deceleration/Braking   
at  ≤ -2.0 OR (at < -
1.0 AND at-1 <-1.0 
AND at-2 <-1.0) 

1 Idle  -1.0 ≤ vt <  1.0 Any 

11 Coast VSPt< 0 0  ≤ vt <  25 Any 

12 Cruise/Acceleration 0 ≤ VSPt < 3 0    ≤ vt <  25 Any 

13 Cruise/Acceleration 3 ≤ VSPt < 6 0    ≤ vt <  25 Any 

14 Cruise/Acceleration 6 ≤ VSPt < 9 0    ≤ vt <  25 Any 

15 Cruise/Acceleration 9 ≤ VSPt < 12 0    ≤ vt <  25 Any 

16 Cruise/Acceleration 12  ≤ VSPt 0    ≤ vt <  25 Any 

21 Coast VSPt < 0 25  ≤ vt <  50 Any 

22 Cruise/Acceleration 0 ≤ VSPt < 3 25  ≤ vt <  50 Any 

23 Cruise/Acceleration 3  ≤ VSPt < 6 25  ≤ vt <  50 Any 

24 Cruise/Acceleration 6   ≤ VSPt < 9 25  ≤ vt <  50 Any 

25 Cruise/Acceleration 9 ≤ VSPt < 12 25  ≤ vt <  50 Any 

27 Cruise/Acceleration 12 ≤ VSPt < 18 25  ≤ vt <  50 Any 

28 Cruise/Acceleration 18 ≤ VSPt < 24 25  ≤ vt <  50 Any 

29 Cruise/Acceleration 24  ≤ VSPt < 30 25  ≤ vt <  50 Any 

30 Cruise/Acceleration 30 ≤ VSPt 25  ≤ vt <  50 Any 

33 Cruise/Acceleration VSPt < 6 50  ≤ vt Any 

35 Cruise/Acceleration 6  ≤ VSPt < 12 50  ≤ vt Any 

37 Cruise/Acceleration 12 ≤ VSPt <18 50  ≤ vt Any 

38 Cruise/Acceleration 18  ≤ VSPt < 24 50  ≤ vt Any 

39 Cruise/Acceleration 24  ≤ VSPt < 30 50  ≤ vt Any 

40 Cruise/Acceleration 30  ≤ VSPt 50  ≤ vt Any 

5.3.1.3 Use Energy/Emissions Lookup for Estimate:  

Based on the VSP bin and the year and classification of the vehicle, 

MOVES provides an estimate of energy and emissions. As an example, 

Table 5-2 below (Guensler et al., 2017) provides the lookup table for 

energy and emissions estimates, for the 2017 Passenger Car fleet, as by 

(Guensler et al., 2017) at Georgia Tech as part of the Moves Matrix effort. 

The table values are hourly; therefore, to obtain energy/emissions for 1 

second of operation, the table value is divided by 3600. For this analysis, 

all vehicles were passenger cars. The 2017 vehicle fleet mix is utilized for 

estimating emissions. 
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Table 5-2 MOVES VSP Bin-Energy/Emission Lookup Table for 2017 Passenger Car 

VSP 

Bin 

Energy 

[kJ/hr] 

CO2 

[g/hr] 

HC 

[g/hr] 

CO 

[g/hr] 

NOX 

[g/hr] 

VOC 

[g/hr] 

PM10 

[g/hr] 

PM2.5 

[g/hr] 

0 38883.4 2795.14 0.056143 1.18597 0.031367 0.0273302 0.0312485 0.0276559 

1 36154.1 2598.94 0.013884 0.211493 0.0304802 0.0067588 0.0269716 0.0238707 

11 56203 4040.16 0.040471 5.19213 0.0508617 0.0197014 0.0267616 0.0236848 

12 76539.5 5502.05 0.031012 8.47656 0.0776475 0.0150966 0.0281616 0.0249238 

13 104739 7529.16 0.058614 7.81524 0.181771 0.0285334 0.0398926 0.0353062 

14 131682 9465.99 0.07973 11.2135 0.320917 0.0388126 0.0395628 0.0350143 

15 156582 11256 0.11115 16.2606 0.56877 0.0541079 0.0380609 0.033685 

16 187952 13510.9 0.177545 27.4365 1.18617 0.0864292 0.0991837 0.0877805 

21 76113.9 5471.46 0.060581 6.76729 0.100583 0.029491 0.0510926 0.0452185 

22 85229.3 6126.72 0.055637 8.96628 0.163372 0.0270841 0.0681786 0.0603401 

23 102924 7398.67 0.059982 11.5309 0.246983 0.0291994 0.0492257 0.0435662 

24 131428 9447.74 0.114459 16.8562 0.416271 0.0557189 0.0541987 0.0479675 

25 174998 12579.7 0.114031 19.1302 0.58379 0.0555102 0.0674152 0.0596645 

27 229015 16462.8 0.180204 28.7293 0.919244 0.0877231 0.108152 0.0957173 

28 308695 22190.6 1.21865 110.987 4.80478 0.59324 0.236312 0.209143 

29 422913 30401.2 2.16363 235.053 8.43589 1.05326 1.13558 1.00502 

30 531087 38177.3 3.57204 825.556 11.0986 1.73887 1.6822 1.48879 

33 106213 7635.11 0.058195 5.08099 0.214375 0.0283295 0.0704087 0.0623138 

35 168360 12102.6 0.080815 8.67589 0.591387 0.0393406 0.104319 0.092325 

37 218360 15696.8 0.103557 12.7708 0.826399 0.0504116 0.080005 0.0708068 

38 284731 20467.9 0.822918 101.727 4.07977 0.400597 0.195906 0.173382 

39 379256 27262.9 1.1949 107.339 6.07319 0.581679 0.412559 0.365127 

40 483460 34753.6 1.56228 315.464 7.6491 0.760519 0.476596 0.421802 

5.4 Comparative Analysis and Discussion 
As stated, two KPIs are determined in the current analysis: (1) Travel-time and (2) Total 

MOVES Estimated CO2 Emissions. These are determined for EB-Through (main-street) 

and NB-Through (side-street) vehicles from the starting counter to the stop bar and 

from the starting counter to a point downstream of the intersection (as depicted in 

Figure 5-1). Vehicles that enter the model in the first 600 simulation seconds were not 

included in the analysis, to allow for a simulation warm-up period. Therefore, for all 

aspects of analysis in this section, only vehicle trips starting at t=600s or later and 

ending at or before t=3600s are considered. For all the boxplots that are presented in 

the sub-sections that follow (Figure 5-4 to Figure 5-11), the red square dots represent 

the mean of the given quantity. As a brief recap on boxplots in general, the top and 

bottom of the solid rectangular box represent the 75th percentile and 25th percentile, 
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respectively, and the black line splitting the solid portion of the box into two is the 

median. 

5.4.1  Travel-time Comparative Analysis 
Travel-time is studied across penetration and demand levels, aggregated over 

five replicate runs. For the EB through traffic with the v/c=0.7 scenario, there 

were approximately 1,150 vehicles that traversed the entire EB-Through route, 

between t=600s and t=3,600s. Figure 5-4 (a) & (b) reflect the travel-time from 

the starting counter to the stop-bar (counter 1) and from the starting counter to 

a point downstream of the intersection (counter 2), respectively (counter 

locations are shown in Figure 5-1). Both plots show a trend of decreasing mean, 

median, and 75th percentile travel-time with increases in AV, CV, and CAV 

penetration levels. The trend is more prominent in the AV and CAV cases than in 

the CV cases. The same trends are consistently observed for NB-Through vehicles 

as well (Figure 5-5 (a) & (b)). 

  

(a)                                                                           (b) 

Figure 5-4 Comparative Study: Travel-Time for EB-Through Route for v/c=0.7 Detected 
at (a) Counter-1, and (b) Counter-2 
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(a)                                                                           (b) 

Figure 5-5 Comparative Study: Travel-Time for NB-Through Route for v/c=0.7 Detected 
at (a) Counter-1, and (b) Counter-2 

 

 

 

 

(a)                                                                           (b) 

Figure 5-6 Comparative Study: Travel-Time for EB-Through Route for v/c=0.9 Detected 
at (a) Counter-1, and (b) Counter-2 
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(a)                                                                           (b) 

Figure 5-7 Comparative Study: Travel-Time for NB-Through Route for v/c=0.9 Detected 
at (a) Counter-1, and (b) Counter-2 

When the analysis is performed for the higher demand level scenario with 

v/c=0.9, the routes consistently processed between 1,470 and 1,480 vehicles, 

across the five replicate runs. As can be seen in Figure 5-6 (a) & (b) and Figure 

5-7 (a) & (b), the trend of reduction in mean travel-time with increases in AV, CV, 

and CAV penetration is observed to become more pronounced in the v/c=0.9 

scenario. Also, the travel-time Inter-Quartile Range (IQR), depicted by the 

vertical length of the boxes in the plots, shows greater reductions with 

increasing penetration rates. In summary, it can be concluded that increasing AV, 

CV, and CAV penetration rates leads to overall improvement in travel time, and 

the effect is more prominent under higher demand levels for the modeled 

intersection. 

It is noted that these values differ slightly from those reported in the previous 

section as the travel times are recorded only over the zones set to allow for 

emissions calculations and only through vehicles are included in this analysis.  

5.4.2  CO2 Emission (MOVES estimate) Comparative Analysis 
Similar analysis is performed for the MOVES estimated CO2 emissions. To allow 

for a comparison between routes and scenarios, CO2 emissions is expressed as 

emissions per unit distance (in grams per feet) for each individual vehicle. The 

same roadway sections are used as in the previous subsection.  
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As seen in Figure 5-8 (a) & (b) below, for EB-Through vehicles, the mean and 

median emissions show a slight reduction with increasing AV penetration. 

However, mean, and median emissions show an increase with increasing CV 

penetration, while CAV increasing penetration rate has an increasing average but 

decreasing median. The emissions IQR also increases for CV and CAV. The same 

trends are observed for NB-Through vehicles, as shown in Figure 5-9(a) & (b) 

below. 

 

(a)                                                                           (b) 

Figure 5-8 Comparative Study: Emissions per Feet for EB-Through Route for v/c=0.7 
Detected at (a) Counter-1, and (b) Counter-2 

 

(a)                                                                           (b) 
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Figure 5-9 Comparative Study: Emissions per Feet for NB-Through Route for v/c=0.7 
Detected at (a) Counter-1, and (b) Counter-2 

Emission trends are further studied for the higher demand level (v/c=0.9). As 

seen in Figure 5-10 (a) & (b) and Figure 5-11 (a) & (b), emissions follow similar 

trends as with the lower demand level (v/c=0.7), although the increases are less 

pronounced. 

 

(a)                                                                           (b) 

Figure 5-10 Comparative Study: Emissions per Feet for EB-Through Route for v/c=0.9 
Detected at (a) (left) Counter-1, and (b) (right) Counter-2 

 

(a)                                                                           (b) 
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Figure 5-11 Comparative Study: Emissions per Feet for NB-Through Route for v/c=0.9 
Counted at (a) (left) Counter-1, and (b) (right) Counter-2 

Throughout these analyses it is also seen that the AV had the lowest emissions 

for each penetration level, with the CV having the highest and the CAV falling 

between the two. It is also seen throughout that the CV and CAV scenarios 

consistently have higher emissions than the base case, which has no connected 

or autonomous technology.  

Based on the travel-time studies in the previous subsection, it would appear, 

vehicles should have more efficient route traversal with increasing AV, CV, and 

CAV penetration, which would imply less overall stopping (either in duration, 

number of stops, or both). Hence, it should intuitively follow that vehicles overall 

should have lower emissions with increasing penetration rates. However, this 

was not seen for CV and CAV. A discussion of this counter-intuitive result is given 

in the next section.  

5.4.2.1 Emission Analysis: Individual Speed Trajectories 

The preceding emissions analysis were at an aggregate level. To find the 

root cause for increasing emissions with increasing CV and CAV 

penetration, individual vehicle trajectories need to be considered. Figure 

5-12 (a, b, c, and d) depict the variation of acceleration with time for 

three individual vehicles that had mean emission values closest to the 

mean emissions for their corresponding scenarios. These acceleration 

profiles are shown for CV penetration rates of 0% (Figure 5-12 (a)), 20% 

(Figure 5-12(b)), 60% (Figure 5-12(c)), and 100% (Figure 5-12(d)), for 

v/c=0.9, and simulation random seed=1, on the EB route. The plots show 

increasing second-by-second fluctuations in accelerations, with increases 

in CV penetration. It is hypothesized that, in the implemented CV logic, 

the vehicles are undergoing more instances of acceleration and 

decelerations by undertaking frequent adjustments to their speed to 

maximize the likelihood of arrival-on-green. This increasing number of 

changes in acceleration results in higher emissions.  

However, in the real world there are certain limitations on how fast an 

acceleration change can be propagated through the drivetrain as well as 

limitations on the frequency and magnitude of acceleration reversals that 

are acceptable for driver comfort. It is therefore expected that for 

implementation success a CV algorithm would need to smooth out the 

accelerations.  
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Figure 5-12 Variations in Acceleration for EB-Through Vehicles with Increasing 
Penetration in CV for v/c=0.9, Simulation Random Seed=0.1 

(a) 0% Penetration (top left), (b) 20% Penetration (top right), (c) 60% Penetration 
(bottom left), and (d) 100% Penetration (bottom right). 

5.4.2.2 Emission Analysis: VSP Operating Mode Bin Histogram 

The next part of the analysis took a closer look at the “turbulence” in 

acceleration that was revealed in the acceleration-time plots of individual 

vehicles. The trends in assignment of vehicle trajectory data to VSP bins 

as it relates to increases in CV penetration are studied. Figure 5-13 (a, b, 

c, and d) below show the VSP Bin density histograms for CV penetration 

rates of 0%, 20%, 60% and 100%, respectively, for v/c=0.9, simulation 

random seed=1, on the EB route. Since the vehicle speed for the network 

never exceeded 25 mph, no data-points were observed beyond VSP-Bin 

16 (see Table 5-1  for bin definitions). By comparing the plots, it becomes 

evident that with increasing CV penetration, more data-points appear in 

Bin-12 (Cruising/Acceleration) and fewer data-points fall in bins 0 

(Deceleration), 1 (Idle), and 11 (Coasting). This shows that the CV 
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algorithm has achieved its stated goal; that is, the reduction in idle time 

shows less time stopped. However, there is an increase in data-points in 

Bin 12, which has a higher emissions value than Bins 0, 1, and 11, 

resulting in more overall emissions. Thus, in the current CV logic 

implemented in VISSIM, for this testbed, with greater CV penetration, 

vehicles have a lower tendency of being in decelerating/idle/coasting 

mode and a higher tendency for cruising with mild acceleration, resulting 

in higher overall emissions. Similar trends are observed for CAV cases as 

reflected in Figure 5-14 (a, b, c, d). 

 

Figure 5-13 Variations in VSP-Bin Distribution for EB-Through Vehicles with Increasing 
Penetration in CV for v/c=0.9, Simulation Random Seed=0.1 

(a) 0% Penetration (top left), (b) 20% Penetration (top right), (c) 60% Penetration 
(bottom left), and (d) 100% Penetration (bottom right). 
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Figure 5-14 Variations in VSP-Bin Distribution for EB-Through Vehicles with Increasing 
Penetration in CAV for v/c=0.9, Random Seed=0.1 

 (a) 0% Penetration (top left), (b) 20% Penetration (top right), (c) 60% Penetration 
(bottom left), (d) 100% Penetration (bottom right). 

5.5 Cause of higher emission with higher penetration levels of CV 
A deeper analysis into the root cause for these trends showed that while the CV logic 

chosen for testing in the VISSIM simulation environment seeks to maximize the 

likelihood of vehicle arrival-on-green, the algorithm likely results in increased variations 

in second-by-second accelerations, leading to overall higher emissions.   

Examining the trajectories for scenarios with higher penetration levels of CV, we found 

the following reasons these produce higher emissions: 

i. Conventional Vehicle (CNV) following behavior 

When the lead vehicle is a CV and the follower a CNV, the CNV does not have the 

same information as the CV. Therefore, instead of slowing down to a lower 

cruising speed, as the CV does (see Figure 4-4 (b)), the CNV aims to achieve its 

desired speed and enters a sharp oscillation pattern around the lower cruising 
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speed of the leader CV.  These oscillations likely contribute to increased 

emissions. 

 

ii. VISSIM’s CV movement logic 

When either the leader or the follower are a CV which enters the communication 

range when the signal is red, VISSIM’s CV logic utilizes a parameter called  

“SpeedMaxForGreenStart”, which is the maximum speed to arrive at the next 

green start (details of these calculations are provided in sections 4.2.1 and 4.2.2). 

The calculation of this parameter depends on the green time remaining. While 

our simulation runs at 0.1s frequency, the COM API updates this parameter 

(internally) every 1s by default (regardless of simulation frequency set). This 

leads to an approximation of “green time remaining” to the nearest second. This 

results in “spikes” every half a second (due to rounding) and results in the 

oscillation pattern shown in Figure 5-15 (a).  This occurs only when the CV arrives 

during the red signal.  The oscillation can be alleviated by calculating the 

“SpeedMaxForGreenStart” parameter manually according to the chosen 

simulation frequency (Figure 5-15 (b)). However, for the purposes of 

demonstration we chose to use VISSIM’s CV code as is, and this may be one of 

the contributing factors to increased emissions with CVs. 

 

(a) Acceleration of Leader- CV and Follower-CV with 30s red remaining  
(VISSIM’s CV logic)   
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(b) Comparison of VISSIM CV logic and manually estimated speed   

Figure 5-15 Optimal Speed provided by VISSIM and Manually Calculated 

 

iii. Artifact of binning 

Finally, it is possible that a portion of the results may be an artifact of the binning 

process used in the MOVES approach.  The emissions may be being 

overestimated if the vehicle operations are occurring at the boundaries of bins 1, 

11, and 12, e.g., a minor change in vehicle operations is shifting the emissions 

calculation from bin 1 to bin 12.  Future efforts will explore this potential impact.  

6 CONCLUSIONS 
This project evaluated the capability of VISSIM to model CAVs and concluded that internal 

modeling provides limited access to vehicle/driver behavior parameters and cannot model 

connectivity. Externally, COM API and EDM have powerful features to enable CAV modeling. 

While COM API has access to all VISSIM data and is helpful in modeling connectivity, it cannot 

provide direct and accurate longitudinal and lateral movement control. The EDM enables full 

control of both longitudinal and lateral movements but with limited accessibility to VISSIM 

data. Hence, this project developed the ability to simulate CAVs in VISSIM by using COM API to 

access network elements and EDM to maintain the longitudinal control of vehicles.  

The functionality and results of this new procedure is demonstrated by simulating CAVs at a 

four-legged isolated signalized intersection using VISSIM. A model developed by Talebpour and 

Mahmassani (2016) was used to replicate the AV logic. The AV logic uses a modified version of 

the Intelligent Driver Model (IDM) with parameters set based on Van Arem et al. (2006) to 

represent the response of an AV. VISSIM’s I2V application (PTV, 2017) allowing the CVs to 
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access signal timing information was used to replicate the CV logic. This CV logic seeks to 

maximize the likelihood of arrival-on-green by changing a vehicle’s speed within certain 

parameters. 

Several traffic scenarios were simulated (demand levels of v/c=0.7, v/c=0.85 and v/c=0.9, and 

CV, AV and CAV market penetration rates of 0% to 100%, at 20% increments (each scenario was 

tested using the same five random seeds). The results show net improvement in traffic 

operational measures (travel time and speed). CAV, the combination of the two technologies 

(i.e., autonomy and connectivity) yields better performance than each of the technologies (CV 

and AV) on their own. 

However, emissions did not follow the same trend. While increasing AV penetration rates 

resulted in emissions reductions, increasing CV and CAV penetration rates resulted in higher 

emissions. A deeper analysis into the root cause for these trends showed that while VISSIM’s CV 

logic seeks to maximize the likelihood of vehicle arrival-on-green, the algorithm likely results in 

oscillation of the second-by-second speeds leading to overall higher emissions. 

7 RECOMMENDATIONS  
The project developed a framework for evaluating AV, CV, and CAV technology in VISSIM.  This 

framework can be used for any model that simulates vehicle movement based on these 

technologies. While important insights were drawn from this study, they are based on a small 

highway network.  Testing of this framework on a larger arterial network and on freeways 

would provide additional information, particularly related to network-wide effects from AV, CV, 

and CAV.  In addition, this project focused on specific AV, CV, and CAV algorithms that replicate 

vehicle movement.  Additional analysis should be conducted to evaluate new algorithms as 

these become available.   

In future work, we plan to incorporate into the simulation extension an intersection 

optimization algorithm for CAVs, developed by the University of Florida. Further, the emissions 

could be incorporated along with the existing delay- based objectives into the problem 

formulation of the optimization. 

While this report is focused on the integration of CV, AV, and CAV algorithms into a simulation 

framework, the research team has also considered the application of such a tool to both small- 

and large-scale transportation challenges.  For instance, in sections 4 and 5 the ability of this 

platform to determine the impact of these technologies on operational and environmental 

performance is demonstrated for a small facility. Appendix E starts the discussion on a much 

larger topic, presenting the case for reimaging the entire parcel delivery system within this new 

technology paradigm. Future efforts will seek to implement and test the proposed delivery 

system in the developed simulation platform.  
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Finally, while important insights were drawn from this study the simplicity and limited size of 

the network provides a challenge in attempting to generalize the findings. In addition, the AV, 

CV, and CAV findings are limited to the algorithms implemented. A more complex network with 

improved technology algorithms would allow for a more robust analysis. To apply the tools 

developed from this project and draw accurate conclusions for a real dataset, calibration and 

validation would also be needed.  
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APPENDICES   
Appendix A: COM API Code 
 
import win32com.client as com 

import os  

import time 

import pandas as pd 

 

# determine the type of data to be output 

# define the the column names of the output csv file 

out_DataType_Traj=['Time Stamp','Vehicle ID', 'Vehicle Type', 'Vehicle 

Length','Vehicle Front Coordinate','Vehicle Rear 

Coordinate','Speed','Acceleration','Headway'] 

out_DataType_Signal=['Time Stamp','Signal head 

ID','Color','Latitude','Longitude','X','Y'] 

# the dictionary to change the default output data from VISSIM to required 

output data  

table_vehicle_type = dict({'100':"Passenger Car",'200':"Passenger 

Truck",'300':"Transit Bus",'400':"Tram",'630':"Passenger Car"}) 

table_signal_color = dict({'RED':0, 'AMBER':1, "GREEN":2})  

# variables name to fetch the data from VISSIM 

get_DataType_traj=('No', 'VehType','Length', 

'CoordFront','CoordRear','Speed','Acceleration','Hdwy') 

get_DataType_signal=('No','SigState') 

# // specify the VISSIM version here// 1000 means VISSIM 10 

VISSIM= com.Dispatch("VISSIM.VISSIM.1000") 

#User input----------------------------------------------------  

# //input your fold directory which contains the VISSIM file here// 

Path_of_COM_Basic_Commands_network = "C:\\Users\\xiduan\\OneDrive - 

University of Florida\\UF\\research\\2.VISSIM AV&CV\\network"  

# //input your network file and layout file name here// 

Network_file='network2.inpx' 

Layout_file='network2.layx' 

# // write your output fold directory here// 

Path_output_file = "C:\\Users\\xiduan\\OneDrive - University of 

Florida\\UF\\research\\2.VISSIM AV&CV\\Document\\Task1\\" 

# //input your simulation duration here// 

simulation_duration=3600 

# Load a VISSIM Network: 

Filename                = 

os.path.join(Path_of_COM_Basic_Commands_network,Network_file) 

flag_read_additionally  = False # you can read network(elements) 

additionally, in this case set "flag_read_additionally" to true 

VISSIM.LoadNet(Filename, flag_read_additionally) 

# Load a Layout: 

Filename = os.path.join(Path_of_COM_Basic_Commands_network, Layout_file) 

VISSIM.LoadLayout(Filename) 

 

# Set vehicle input: 

# // change the vehicles input here// 
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VI_number   = 1 # VI = Vehicle Input 

new_volume  = 1600 # vehicles per hour 

VISSIM.Net.VehicleInputs.ItemByKey(VI_number).SetAttValue('Volume(1)', 

new_volume) 

 

# Set vehicle composition: 

# //set the vehicles composition here// 

Veh_composition_number = 1 

Rel_Flows = 

VISSIM.Net.VehicleCompositions.ItemByKey(Veh_composition_number).VehCompRelFl

ows.GetAll() 

# here the type 630 is the connected vehicles,type 100 is the normal vehicles 

Rel_Flows[0].SetAttValue('VehType',        100) # Changing the vehicle type 

Rel_Flows[1].SetAttValue('VehType',        630) # Changing the vehicle type 

Rel_Flows[0].SetAttValue('DesSpeedDistr',   70) # Changing the desired speed 

distribution 

Rel_Flows[1].SetAttValue('DesSpeedDistr',   70) # Changing the desired speed 

distribution 

Rel_Flows[0].SetAttValue('RelFlow',        50) # Changing the relative flow 

Rel_Flows[1].SetAttValue('RelFlow',        50) # Changing the relative flow 

of the 2nd Relative Flow. 

 

## function to calculate the distance 

# a, b are two list contain coordinate like [x,y,z] 

def cal_dis(coord1,coord2): 

    return ((float(coord1[0])-float(coord2[0]))**2+(float(coord1[1])-

float(coord2[1]))**2)**0.5 

 

## function to find the vehicles ID within certain range/radiums 

# Num is the vehicles ID and Radiums is the range  

def Vehicle_within(Num, Radiums,add_data): 

    current_coord=add_data.loc[add_data['No']==Num,'CoordFront'][0] 

    current_coord=current_coord.split() 

    vehicle_list=[] 

    No_=add_data.loc[add_data['No']!=Num, 'No']     

    Coor_=[i.split() for i in add_data.loc[add_data['No']!=Num, 

'CoordFront']] 

    look_table=dict(zip(No_,Coor_)) 

    for i in No_: 

        if cal_dis(look_table[i],current_coord)<=Radiums: 

            vehicle_list.append(i) 

    return vehicle_list 

 

 

 

 

#---------------------   for the simualtion 

time_step=0  

#  time sleep time 

time_sleep=0 

#create the dataframe for output 

dataSet_traj=pd.DataFrame(columns=out_DataType_Traj) 
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dataSet_signal=pd.DataFrame(columns=out_DataType_Signal) 

# initiate the simulation parameters 

time_step=0  

time_sleep=0 

simulation_duration=3600 

## Read the signal coordinate data: 

signal_input = pd.read_excel(Path_output_file+"Signal data input.xlsx") 

# get the CVs(type 630) data 

while time_step<simulation_duration: 

    all_veh_attributes = 

VISSIM.Net.Vehicles.GetMultipleAttributes((get_DataType_traj))               

    select_vehicles=[veh for veh in all_veh_attributes if veh[1]=='630'] 

# define and output the signal file here:     

    add_data_signal = pd.DataFrame(out_DataType_Signal) 

    add_data_signal=pd.DataFrame([i for i in 

VISSIM.Net.SignalHeads.GetMultipleAttributes(get_DataType_signal)]) 

    add_data_signal.insert(0,'Time Stamp',time_step) 

    add_data_signal=pd.concat([add_data_signal, 

signal_input.loc[:,['latitude','longitude','x','y']]],1) 

    add_data_signal.columns = out_DataType_Signal 

#data conversion: including the unit and type 

    add_data_signal.loc[:,'Color'] = 

add_data_signal.loc[:,'Color'].replace(table_signal_color) 

    add_data_signal.loc[:,'Time Stamp'] = add_data_signal.loc[:,'Time 

Stamp']/10 

#output 

    dataSet_signal=dataSet_signal.append(add_data_signal,ignore_index = True) 

    dataSet_signal=dataSet_signal[out_DataType_Signal]                 

    dataSet_signal.to_csv(Path_output_file+'Signal_data.csv',  index=False )     

#output trajectory data here 

# check if have the CVs in the network 

    if not select_vehicles: 

        time_step+=1 

        time.sleep(time_sleep) 

        VISSIM.Simulation.RunSingleStep() 

    else: 

# collect and output the trajectory data 

        add_data_traj = pd.DataFrame(select_vehicles) 

        add_data_traj.insert(0,'Time Stamp',time_step) 

        add_data_traj.columns=(out_DataType_Traj) 

#data conversion: including the unit and type 

        add_data_traj.loc[:,'Vehicle Type']=add_data_traj.loc[:,'Vehicle 

Type'].replace(table_vehicle_type) 

        add_data_traj.loc[:,'Time Stamp']=add_data_traj.loc[:,'Time 

Stamp']/10 

        add_data_traj.loc[:,'Acceleration']= 

add_data_traj.loc[:,'Acceleration']/1.46667 #feet/second /s  to mile/h/ s 

        dataSet_traj=dataSet_traj.append(add_data_traj,ignore_index = True) 

        dataSet_traj=dataSet_traj[out_DataType_Traj]                 

        dataSet_traj.to_csv(Path_output_file+'Trajectory_data.csv',  

index=False )     

# run the simulation 
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        VISSIM.Simulation.RunSingleStep() 

        time_step+=1 

        # Method #5: Accessing all attributes directly using 

"GetMultipleAttributes" (even more faster) 

        all_veh_attributes = VISSIM.Net.Vehicles.GetMultipleAttributes(('No', 

'VehType', 'acceleration', 'Speed', 'DistanceToSigHead')) 

        for cnt in range(len(all_veh_attributes)): 

            print ('%s  |  %s  |  %.2f  |  %.2f  |  %s' % 

(all_veh_attributes[cnt][0], all_veh_attributes[cnt][1], 

all_veh_attributes[cnt][2], all_veh_attributes[cnt][3], 

all_veh_attributes[cnt][4])) # only display the 2nd column) 

        time.sleep(time_sleep) 

 

Code to retrieve vehicles within specified radius 

## function to calculate the distance 

# a, b are two list contain coordinate like [x,y,z] 

def cal_dis(coord1,coord2): 

    return ((float(coord1[0])-float(coord2[0]))**2+(float(coord1[1])-

float(coord2[1]))**2)**0.5 

 

## function to find the vehicles ID within certain range/radiums 

# Num is the vehicles ID and Radiums is the range  

def Vehicle_within(Num, Radiums,add_data): 

    current_coord=add_data.loc[add_data['No']==Num,'CoordFront'][0] 

    current_coord=current_coord.split() 

    vehicle_list=[] 

    No_=add_data.loc[add_data['No']!=Num, 'No']     

    Coor_=[i.split() for i in add_data.loc[add_data['No']!=Num, 

'CoordFront']] 

    look_table=dict(zip(No_,Coor_)) 

    for i in No_: 

        if cal_dis(look_table[i],current_coord)<=Radiums: 

            vehicle_list.append(i) 

    return vehicle_list 
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Appendix B: Speed and Delay Results by Scenario 

Average speed (mile/h) for AV simulation 

v/c penetration rate runs mean SD min max 

0.7 

0 5 14.19 0.14 14.01 14.38 

20 5 14.42 0.12 14.23 14.53 

40 5 14.61 0.12 14.41 14.71 

60 5 14.76 0.14 14.52 14.88 

80 5 14.88 0.15 14.64 15.04 

100 5 14.99 0.14 14.78 15.18 

0.85 

0 5 13.08 0.06 13.00 13.17 

20 5 13.46 0.11 13.33 13.64 

40 5 13.74 0.10 13.64 13.89 

60 5 13.98 0.09 13.89 14.11 

80 5 14.17 0.11 14.08 14.34 

100 5 14.31 0.13 14.19 14.51 

0.9 

0 5 11.50 0.12 11.33 11.67 

20 5 11.89 0.11 11.71 12.01 

40 5 12.20 0.08 12.07 12.30 

60 5 12.51 0.07 12.43 12.58 

80 5 12.74 0.05 12.70 12.82 

100 5 12.98 0.04 12.94 13.04 

Average speed (mile/h) for CV simulation 

v/c penetration rate runs mean SD min max 

0.7 

0 5 14.19 0.14 14.01 14.38 

20 5 14.38 0.13 14.18 14.51 

40 5 14.53 0.10 14.36 14.62 

60 5 14.65 0.10 14.50 14.75 

80 5 14.76 0.10 14.61 14.85 

100 5 14.85 0.10 14.69 14.97 

0.85 

0 5 13.08 0.06 13.00 13.17 

20 5 13.43 0.08 13.35 13.53 

40 5 13.67 0.07 13.60 13.76 

60 5 13.84 0.10 13.72 13.97 

80 5 14.03 0.09 13.92 14.15 

100 5 14.08 0.10 13.95 14.22 

0.9 

0 5 11.50 0.12 11.33 11.67 

20 5 12.17 0.11 12.01 12.30 

40 5 12.64 0.07 12.53 12.72 

60 5 12.91 0.07 12.80 12.95 
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v/c penetration rate runs mean SD min max 

80 5 13.13 0.09 12.99 13.23 

100 5 13.31 0.10 13.17 13.39 

 

Average speed (mile/h) for CAV simulation 

v/c penetration rate runs mean SD min max 

0.7 

0 5 14.19 0.14 14.01 14.38 

20 5 14.66 0.08 14.53 14.73 

40 5 14.97 0.10 14.82 15.10 

60 5 15.23 0.09 15.08 15.34 

80 5 15.44 0.11 15.27 15.55 

100 5 15.67 0.11 15.51 15.80 

0.85 

0 5 13.08 0.06 13.00 13.17 

20 5 13.83 0.12 13.68 13.99 

40 5 14.25 0.10 14.12 14.38 

60 5 14.58 0.09 14.51 14.74 

80 5 14.89 0.11 14.79 15.07 

100 5 15.11 0.14 14.98 15.32 

0.9 

0 5 11.50 0.12 11.33 11.67 

20 5 12.58 0.06 12.52 12.64 

40 5 13.17 0.07 13.08 13.26 

60 5 13.55 0.06 13.48 13.64 

80 5 13.84 0.06 13.77 13.92 

100 5 14.11 0.05 14.06 14.18 

 

Average delay (s/veh) for AV simulation 

v/c penetration rate runs mean SD min max 

0.7 

0 5 13.23 0.44 12.62 13.74 

20 5 12.48 0.37 12.14 13.07 

40 5 11.89 0.37 11.52 12.49 

60 5 11.45 0.42 11.12 12.15 

80 5 11.08 0.42 10.67 11.77 

100 5 10.77 0.39 10.29 11.37 

0.85 

0 5 17.17 0.21 16.93 17.44 

20 5 15.72 0.36 15.18 16.16 

40 5 14.71 0.31 14.28 15.04 

60 5 13.90 0.26 13.53 14.19 

80 5 13.26 0.30 12.80 13.57 

100 5 12.81 0.37 12.28 13.21 

0.9 

0 5 24.02 0.63 23.20 24.94 

20 5 22.09 0.53 21.59 22.97 

40 5 20.65 0.42 20.20 21.31 

60 5 19.33 0.31 18.96 19.74 
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80 5 18.37 0.26 17.98 18.63 

100 5 17.45 0.20 17.13 17.67 

 

Average delay (s/veh) for CV simulation 

v/c penetration rate runs mean SD min max 

0.7 

0 5 13.23 0.44 12.62 13.74 

20 5 12.63 0.43 12.21 13.24 

40 5 12.17 0.32 11.82 12.66 

60 5 11.81 0.32 11.44 12.24 

80 5 11.47 0.30 11.21 11.90 

100 5 11.22 0.31 10.85 11.65 

0.85 

0 5 17.17 0.21 16.93 17.44 

20 5 15.88 0.34 15.41 16.24 

40 5 15.05 0.28 14.61 15.30 

60 5 14.47 0.35 14.08 14.89 

80 5 13.84 0.30 13.47 14.22 

100 5 13.68 0.37 13.26 14.09 

0.9 

0 5 24.02 0.63 23.20 24.94 

20 5 21.00 0.46 20.35 21.59 

40 5 19.06 0.40 18.65 19.70 

60 5 18.00 0.41 17.75 18.73 

80 5 17.15 0.49 16.76 17.97 

100 5 16.50 0.50 16.16 17.28 

 

Average delay (s/veh) for CAV simulation 

v/c penetration rate runs mean SD min max 

0.7 

0 5 13.23 0.44 12.62 13.74 

20 5 11.76 0.24 11.48 12.11 

40 5 10.84 0.30 10.40 11.24 

60 5 10.10 0.27 9.75 10.50 

80 5 9.51 0.28 9.18 9.94 

100 5 8.90 0.26 8.60 9.29 

0.85 

0 5 17.17 0.21 16.93 17.44 

20 5 14.44 0.39 13.99 14.93 

40 5 13.02 0.29 12.69 13.44 

60 5 11.99 0.25 11.58 12.22 

80 5 11.08 0.29 10.61 11.36 

100 5 10.42 0.35 9.91 10.77 

0.9 

0 5 24.02 0.63 23.20 24.94 

20 5 19.15 0.26 18.87 19.42 

40 5 16.83 0.29 16.44 17.27 

60 5 15.38 0.23 15.08 15.71 
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80 5 14.38 0.19 14.14 14.60 

100 5 13.46 0.16 13.26 13.68 

 

 

Appendix C: COM API Code written in Python 3.0  
 
import win32com.client as com 

import os  

from data_io import msgManager 

import time 

import pandas as pd 

import auModel 

import argparse 

#-- 

# os.chdir(r"C:\Users\essie-adm-luan\Downloads\CAV-simulation-xixi\CAV-simulation-

xixi"); 

# LC: saves you the effort of updating the working directory 

currentDir = os.path.abspath(os.path.dirname(__file__))  

os.chdir(currentDir) 

#---simulation scenarios  

# 1 0.8 0.6 0.4 0.2 

# 1 0.8 0.6 0.4 0.2 

# 0.8 0.6 0.4 0.2 

Random_Seed = 887 

 

 

# vc ratio 0.9,0.85,0.7 

vc = [0.85, 0.7] 

#penetration 0.0001 0.2 0.4 0.6 0.8 1.0 

penetration = [ 0.2, 0.4, 0.6, 0.8, 1.0] 

 

 

for kk0 in vc: 

    for kk in penetration: 

        print(kk) 

        vc_ratio = kk0 

        penetration_rate = kk 

        network_folder = "network3 - vc" + " " + str(vc_ratio) + " " + 

str(int(penetration_rate*100)) + "%" 

        #network_folder = "network - vc 0.9 80% - basic" 

        #-----------------------------------------------------------------------------

------------------------- 

        parser = argparse.ArgumentParser() 

         

        # directory setting 

        parser.add_argument('--path_output_file', default = 

os.path.join(currentDir,"output"), help = "the directory of output file, the default 

is the current working directory ") 

        parser.add_argument('--path_of_network', default = os.path.join(currentDir, 

network_folder), help = "the directory of network file, including .inpx and .layx") 

         

        # simulation parameters setting 

        parser.add_argument('--version_VISSIM', default = "VISSIM.VISSIM.1000" , help 

= "1000 means VISSIM 10") 

        parser.add_argument('--network_file', default = "network2.inpx" , help = "the 

name of VISSIM network file") 

        parser.add_argument('--layout_file', default = "network2.layx" , help = "the 

name of VISSIM layout file") 



   Evaluation of Advanced Vehicle and Communication 
Technologies through Traffic Microsimulation 

   

83 

 

         

        parser.add_argument('--duration', default = 36000 ,type = int, help = 

"simulation duration, unit in sim second") 

        parser.add_argument('--time_sleep', default = 0 ,type = float, help = "the 

sleep time between each time step of simulation") 

        # simulation traffic input setting  

        parser.add_argument('--sb_volume', default = 1500 ,type = int, help = "traffic 

volume of southbound, vehicles / hr") 

        parser.add_argument('--nb_volume', default = 1500 ,type = int, help = "traffic 

volume of northbound, vehicles / hr") 

        parser.add_argument('--wb_volume', default = 1500 ,type = int, help = "traffic 

volume of westbound, vehicles / hr") 

        parser.add_argument('--eb_volume', default = 1500 ,type = int, help = "traffic 

volume of eastbound, vehicles / hr") 

        parser.add_argument('--CAV_rel_flow', default = 0.2 ,type = float, help = "the 

percentage of CAV volume") 

        parser.add_argument('--Desired_speed', default = 32 ,type = float, help = "the 

desired speed km/h") 

        parser.add_argument('--minSpeed', default = 5 ,type = float, help = "the 

minimal speed for AV km/h") 

         

         

        # traffic model setting 

        parser.add_argument('--max_dec', default = -5.0 ,type = float, help = "the 

maximum deceleration, m / s^2") 

        parser.add_argument('--comf_dec', default = -3.5 ,type = float, help = "the 

comfortable deceleration, m / s^2") 

        parser.add_argument('--max_acc', default = 3 ,type = float, help = "the 

maximum acceleration, m / s^2") 

        parser.add_argument('--comf_acc', default = 2.5 ,type = float, help = "the 

comfortable acceleration, m / s^2") 

        parser.add_argument('--desired_speed_change_rate', default = 1 ,type = float, 

help = "used to define how driver would change to desired speed") 

        simulation = parser.parse_args() 

         

         

         

        left_lane = ['10012-1','10015-1','10011-1','10008-1','10003-1','10006-

1','10010-1','10001-1'] 

         

         

         

        # Loads the message manager that will send and receive the messages 

        msgCfgFile = os.path.join(currentDir, "data_io_config", 

"Local_RIO_VISSIM.yml") 

        messageManager = msgManager(msgCfgFile) 

         

        sendMessage = False # this is to avoid breaking the code for now.  

        f = open(simulation.path_output_file + "\\Trajectory.txt", "w") 

        f.close()  

                

      

         

        # determine the type of data to be output ------------------------------------

-- 

        # define the the column names of the output csv file 

         

        out_DataType_Traj = ['Time Stamp','Vehicle ID', 'Vehicle Type', 'Vehicle 

Length','Vehicle Front Coordinate','Vehicle Rear 

Coordinate','Speed','Acceleration','Headway','Lane'] 

        # data type for signal output 

        out_DataType_Signal = ['Time Stamp','Signal head 

ID','Color','Latitude','Longitude','X','Y'] 
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        # data type for trajectory output 

        out_DataType_Traj_em = ['Time Stamp','Vehicle ID', 'Vehicle Type', 'Vehicle 

Length','Vehicle Front Coordinate','Vehicle Rear 

Coordinate','Speed','Acceleration','Headway'] 

        # data type for CV (RIO) output 

        out_DataType_CVModel = ["No", "Pos", "Speed","pos_rms", "speed_rms", 

"veh_type", "veh_length", "max_accel", "max_decel"] 

        # the dictionary to change the default output data from VISSIM to required 

output data  

        table_vehicle_type = dict({'100':"Passenger Car",'200':"Passenger 

Truck",'300':"Transit Bus",'400':"Tram",'630':"Passenger Car"}) 

        table_signal_color = dict({'RED':0, 'AMBER':1, "GREEN":2})  

        # variables name to fetch the data from VISSIM 

        get_DataType_traj=('No', 'VehType','Length', 

'CoordFront','CoordRear','Speed','Acceleration','Hdwy', 'Lane' ) 

        get_DataType_signal=('No','SigState') 

        # // specify the VISSIM version here// 1000 means VISSIM 10 

        VISSIM= com.Dispatch(simulation.version_VISSIM) 

         

        #// input the lanes number and their corresponding start point's coordinate 

        ''' 

        Lane 4: Eastbound,  (-181, -22) 

        Lane 3: Northbound  (-117, -141)  

        Lane 1: Westbound   (60, -1)  

        Lane 2: Southbound  (-165, 131)  

             

        ''' 

        eb_coor = (-181, -22) 

        nb_coor = (-117, -141) 

        wb_coor = (60, -1) 

        sb_coor = (165, 131) 

        eb_lane = 3 

        nb_lane = 4 

        wb_lane =1 

        sb_lane = 2 

        lane_to_cor = {eb_lane : eb_coor, nb_lane :  nb_coor, wb_lane: wb_coor, 

sb_lane : sb_coor } 

        store_speed = pd.DataFrame(columns = ["Vehicle ID","x speed", "y speed"]) 

        vehicle_type_dict = {"Passenger Car" : 0} 

         

        #-------------------------------------------------------------- 

        ## Load a VISSIM Network: 

        Filename                = 

os.path.join(simulation.path_of_network,simulation.network_file) 

        flag_read_additionally  = False # you can read network(elements) additionally, 

in this case set "flag_read_additionally" to true 

        VISSIM.LoadNet(Filename, flag_read_additionally) 

        ## Load a Layout: 

        Filename = os.path.join(simulation.path_of_network,simulation.layout_file) 

        VISSIM.LoadLayout(Filename) 

        CAV = '650' 

        TRA_car = '100' 

        # Set vehicle input: 

        # // change the vehicles input here// 

        

#============================================================================== 

        # Desired_speed = 20 

        # cav_flow_rate = simulation.CAV_rel_flow 

        # VISSIM.Net.VehicleInputs.ItemByKey(1).SetAttValue('Volume(1)', 

simulation.eb_volume) 

        # VISSIM.Net.VehicleInputs.ItemByKey(2).SetAttValue('Volume(1)', 

simulation.nb_volume) 
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        # VISSIM.Net.VehicleInputs.ItemByKey(3).SetAttValue('Volume(1)', 

simulation.wb_volume) 

        # VISSIM.Net.VehicleInputs.ItemByKey(4).SetAttValue('Volume(1)', 

simulation.sb_volume) 

        # # Set vehicle composition: 

        

#============================================================================== 

          # //set the vehicles composition here// 

        VISSIM.Simulation.SetAttValue('RandSeed', Random_Seed) 

        Veh_composition_number = 1 

        Rel_Flows = 

VISSIM.Net.VehicleCompositions.ItemByKey(Veh_composition_number).VehCompRelFlows.GetAl

l() 

          # here the type 630 is the connected vehicles,type 100 is the normal 

vehicles 

        conventional_flow =  (1- penetration_rate) * 100 if penetration_rate != 1 else 

0.001 

        Rel_Flows[0].SetAttValue('RelFlow',        conventional_flow) # Changing the 

relative flow 

        Rel_Flows[1].SetAttValue('RelFlow',        penetration_rate *100) # Changing 

the relative flow of the 2nd Relative Flow. 

         

        #  

        

#============================================================================== 

        ## function to calculate the distance 

        # a, b are two list contain coordinate like [x,y,z] 

        def cal_dis(coord1,coord2): 

            return ((float(coord1[0])-float(coord2[0]))**2+(float(coord1[1])-

float(coord2[1]))**2)**0.5 

         

        ## function to find the vehicles ID within certain range/radiums 

        # Num is the vehicles ID and Radiums is the range  

        def Vehicle_within(Num, Radiums,add_data): 

            current_coord=add_data.loc[add_data['No']==Num,'CoordFront'][0] 

            current_coord=current_coord.split() 

            vehicle_list=[] 

            No_=add_data.loc[add_data['No']!=Num, 'No']     

            Coor_=[i.split() for i in add_data.loc[add_data['No']!=Num, 'CoordFront']] 

            look_table=dict(zip(No_,Coor_)) 

            for i in No_: 

                if cal_dis(look_table[i],current_coord)<=Radiums: 

                    vehicle_list.append(i) 

            return vehicle_list 

         

        def leading(lead_vehicle_id,data_set, start ): 

            current_index = start 

            while current_index >= 0: 

                item = data_set[current_index] 

                if item[0] == lead_vehicle_id: 

                    return [item[2],item[3],item[4]] 

                current_index -= 1 

            return False 

         

         

         

         

        ##----------------------------------------------------   CV coding part 

         

        def toList(NestedTuple): 

            # function to convert a nested tuple to a nested list 

            return list(map(toList, NestedTuple)) if isinstance(NestedTuple, (list, 

tuple)) else NestedTuple 
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        def Init(): 

            # Initialisation.  

            # add global variables 

            global minSpeed 

            global vehTypesEquipped 

            global vehsAttributes 

            global vehsAttNames 

            # read the minimum Speed from the script UDA 

            minSpeed = simulation.minSpeed 

         

            vehsAttributes = [] 

            vehsAttNames = [] 

         

            # read which vehicle types are able to receive the signal information and 

being able to adjust their speed. 

            vehTypesAttributes = VISSIM.Net.VehicleTypes.GetMultipleAttributes(['No', 

'ReceiveSignalInformation']) 

            vehTypesEquipped = [str(x[0]) for x in vehTypesAttributes if x[1] == True] 

# list of vehicle types which are able to adjust their speed, e.g. [102, 103] 

         

        def OptimalSpeedMin(minSpeed, desSpeed): 

            # A minimum speed is required to arrive during the current green. 

            if minSpeed < desSpeed: # check if the desired speed is higher then the 

minimum speed 

                # keep desired speed because it is faster => the vehicle will arrive 

at the signal within the current green 

                optimalSpeed = desSpeed 

            else: 

                optimalSpeed = -1 # no optimal speed in case the desired speed is 

larger or equal the required minimum speed 

            return optimalSpeed 

         

        def OptimalSpeedMax(maxSpeed, desSpeed): 

            # The vehicle should not drive above the maximum speed in order to arrive 

just when the next green starts.  

            if maxSpeed > desSpeed: # check if the maximum speed is higher then the 

desired speed  

                # keep desired speed because the desired speed to lower than the 

maximum speed => the vehicle will arrive after the signal turned green  

                optimalSpeed = desSpeed 

            else: 

                optimalSpeed = maxSpeed # optimal speed for arriving at the next green 

            return optimalSpeed 

        # equivalent to # return min(maxSpeed, desSpeed)  

         

        def GetVISSIMDataVehicles(): 

            # this function reads vehicle attributes from PTV VISSIM 

            global vehsAttributes 

            global vehsAttNames 

            vehsAttributesNames = ['No', 'VehType', 'Lane', 'DesSpeed', 'OrgDesSpeed', 

'DistanceToSigHead', 'SpeedMaxForGreenStart', 'SpeedMinForGreenEnd','Speed'] 

            vehsAttributes = 

toList(VISSIM.Net.Vehicles.GetMultipleAttributes(vehsAttributesNames)) 

         

            # create dictionary for the attribute names read from PTV VISSIM: 

            vehsAttNames = {} 

            cnt = 0 

            for att in vehsAttributesNames: 

                vehsAttNames.update({att: cnt}) 

                cnt += 1 
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        def ChangeSpeed(): 

            diffSpeed = 2 # keep speed a little smaller so that vehicle arrive shortly 

before the signal head. 

            GetVISSIMDataVehicles() # read vehicle attributes from PTV VISSIM to 

global variable "vehsAttributes" 

            acc_cv = [] 

            ID_cv = []    

            if len(vehsAttributes) > 0: # if there are any vehicles in the network 

                for vehAttributes in vehsAttributes: # loop over all vehicles in the 

network 

                    if vehAttributes[vehsAttNames['VehType']] in vehTypesEquipped: # 

check if vehicle is able to receive signal information 

                        if vehAttributes[vehsAttNames['Lane']] in left_lane: 

                            continue 

                        # set easier variables of the current vehicle: 

                        DesSpeed = vehAttributes[vehsAttNames['DesSpeed']] 

                        OrgDesSpeed = vehAttributes[vehsAttNames['OrgDesSpeed']] 

                        DistanceToSigHead = 

vehAttributes[vehsAttNames['DistanceToSigHead']] 

                        SpeedMaxForGreenStart = 

vehAttributes[vehsAttNames['SpeedMaxForGreenStart']] # Maximum speed to arrive at the 

next green start. If the vehicle drives faster it would arrive at the signal before 

the next green time. 

                        SpeedMinForGreenEnd = 

vehAttributes[vehsAttNames['SpeedMinForGreenEnd']] # Minimum speed to arrive at the 

next green end. If the vehicle drives slower, it would not make it in the current / 

next green time. 

             

                        if OrgDesSpeed == None: # if the original desired speed has 

not yet saved, save it to the UDA "OrgDesSpeed" 

                            OrgDesSpeed = DesSpeed 

                            vehAttributes[vehsAttNames['OrgDesSpeed']] = DesSpeed # 

OrgDesSpeed = DesSpeed;  save original desired speed 

             

                        # if the vehicle does not have a upcoming signal: set original 

desired speed 

                        if DistanceToSigHead <= 0: 

                            vehAttributes[vehsAttNames['DesSpeed']] = OrgDesSpeed # 

DesSpeed = OrgDesSpeed 

                            continue # jump to next vehicle 

             

                        #--------------------------------------- 

                        #  Decide about the optimal speed      | 

                        #--------------------------------------- 

                        if SpeedMinForGreenEnd > SpeedMaxForGreenStart: 

                            # The minimum speed for arriving before the next green end 

is higher than the maximum speed to arriving after the next green start. This is only 

possible in case the next signal is green. 

                # > there is green ahead! 

                            optimalSpeed= OptimalSpeedMin(SpeedMinForGreenEnd, 

OrgDesSpeed) 

                            if optimalSpeed == -1:     

             # check if no optimal speed in case the desired speed is larger or equal 

the required minimum speed 

                                optimalSpeed= OptimalSpeedMax(SpeedMaxForGreenStart, 

OrgDesSpeed) 

                        else: 

                # There is red light ahead! 

                # Use maximum speed: 

                            optimalSpeed = max(min(SpeedMaxForGreenStart, OrgDesSpeed) 

- diffSpeed, minSpeed) 
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                        vehAttributes[vehsAttNames['DesSpeed']] = optimalSpeed # set 

optimal speed to the vehicles attributes 

                        acc_cv.append((optimalSpeed -

vehAttributes[vehsAttNames['Speed']] ) / 3.6 * simulation.desired_speed_change_rate) 

                        ID_cv.append(vehAttributes[vehsAttNames['No']]) 

                #---------------------------------------------------------------------

------- 

                #  After iterating though all vehicles, update the speeds in PTV 

VISSIM     | 

                #---------------------------------------------------------------------

------- 

               

            return ID_cv, acc_cv 

             

         

                 

        ##---------------------  setting for the simualtion 

        start_time = time.time() 

        traj_file = pd.DataFrame(columns = out_DataType_Traj_em) 

        traj_file.to_csv(simulation.path_output_file + "\\" + network_folder 

+"Trajectory_data.csv",  index = None,  mode='w') 

        signal_file = pd.DataFrame(columns = out_DataType_Signal) 

        signal_file.to_csv(simulation.path_output_file + "\\" + network_folder + 

"Signal_data.csv",  index = None,  mode='w') 

        log_col = ['time','No', 'VehType', 'pos','acceleration',' speed','leading 

pos', 'leading speed', 'leading acc','leading 

length','headway','Lane','design_acceleration', 'state'] 

        log_file = pd.DataFrame(columns = log_col) 

        log_file.to_csv(simulation.path_output_file + "\\" + network_folder + 

"log.csv",  index = None,  mode='w') 

        #create the dataframe for output 

        CV_data = pd.DataFrame(columns = out_DataType_CVModel) 

         

         

        # initiate the simulation parameters 

        Init() 

        # initial the cv  

        time_step=0  

        pre_data_traj = pd.DataFrame(columns = out_DataType_Traj) 

        speed_vehicle = pd.DataFrame(columns = ["Vehicle ID", "Split Speed"]) 

        ## Read the signal coordinate data: 

        inputpath = simulation.path_output_file + "\\Signal_data.txt" 

        signal_input = pd.read_table(inputpath) 

        buffer =  2 

        #-------------------------------------- start simulation 

        #  Random_Seed = 42 

        #  VISSIM.Simulation.SetAttValue('RandSeed', Random_Seed) 

        # 

         

                 

        def merge_array(ID_1, ACC_1, ID_2, ACC_2): 

            if len(ID_1) == 0: 

                return ID_2, ACC_2 

            if len(ID_2) == 0: 

                return ID_1, ACC_1 

            dict1 = {ID_1[i]:ACC_1[i] for i in range(len(ID_1))} 

            for i in range(len(ID_2)): 

                key = ID_2[i] 

                if key in dict1: 

                    dict1[key] = min(ACC_2[i], dict1[key]) 

                else: 

                    dict1[key] = ACC_2[i] 

            return list(dict1.keys()), list(dict1.values()) 
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        VISSIM.Simulation.RunSingleStep() 

        while time_step <= simulation.duration: 

            all_veh_attributes = 

VISSIM.Net.Vehicles.GetMultipleAttributes((get_DataType_traj))   

        # select_vehicles,add_data_traj, dataSet_traj  are for emission model purpose             

            all_veh_attributes=[veh for veh in all_veh_attributes] 

        # define and output the signal file here:     

            add_data_signal = pd.DataFrame(out_DataType_Signal) 

            add_data_signal = pd.DataFrame([i for i in 

VISSIM.Net.SignalHeads.GetMultipleAttributes(get_DataType_signal)]) 

            add_data_signal.insert(0,'Time Stamp',time_step) 

            add_data_signal = pd.concat([add_data_signal, 

signal_input.loc[:,['latitude','longitude','x','y']]],1) 

            add_data_signal.columns = out_DataType_Signal 

        #data conversion: including the unit and type 

            add_data_signal.loc[:,'Color'] = 

add_data_signal.loc[:,'Color'].replace(table_signal_color) 

            add_data_signal.loc[:,'Time Stamp'] = add_data_signal.loc[:,'Time 

Stamp']/10 

        #output               

            add_data_signal.to_csv(simulation.path_output_file + "\\" + network_folder 

+ 'Signal_data.csv',   header = None,  index = None,  mode='a' )     

        #output trajectory data here 

        # check if have the CVs in the network 

            vehicle_ID = [] 

            vehicle_acc = [] 

            if not all_veh_attributes: 

                print("no vehicles") 

            else: 

        # collect and output the trajectory data 

                vehicle_ID2, vehicle_acc2 = ChangeSpeed() 

                add_data_traj = pd.DataFrame(all_veh_attributes) 

                add_data_traj.insert(0,'Time Stamp',time_step) 

                add_data_traj.columns=(out_DataType_Traj) 

        # log file initilization: 

                log_file = pd.DataFrame(columns = log_col) 

        #data conversion: including the unit and type 

                add_data_traj.loc[:,'Vehicle Type']=add_data_traj.loc[:,'Vehicle 

Type'].replace(table_vehicle_type) 

                add_data_traj.loc[:,'Time Stamp']=add_data_traj.loc[:,'Time Stamp']/10 

                add_data_traj.loc[:,'Speed']=add_data_traj.loc[:,'Speed'] / 1.6 # km/h 

to mile/h 

                add_data_traj.loc[:,'Acceleration']= 

add_data_traj.loc[:,'Acceleration'] * 2.237 #meter/second /s  to mile/h/ s 

                add_data_traj.loc[:,'Vehicle Length']= add_data_traj.loc[:,'Vehicle 

Length'] * 3.28084 #meter  to feet 

                add_data_traj.loc[:,'Headway']= add_data_traj.loc[:,'Headway'] * 

3.28084 #meter  to feet 

        # calculate the lateral and longitudinal speed         

                 

        

#============================================================================== 

        #         speed_cal_curr = add_data_traj.loc[:,["Vehicle ID" , "Vehicle Front 

Coordinate", "Lane"]] 

        #         speed_cal_prev = pre_data_traj.loc[:,["Vehicle ID" , "Vehicle Front 

Coordinate", "Lane"]]         

        #         speed_cal_curr["x_coor_curr"] = [float(speed_cal_curr.loc[:, 

"Vehicle Front Coordinate"][i].split()[0]) for i in range(speed_cal_curr.shape[0]) ] 

        #         speed_cal_curr["y_coor_curr"] = [float(speed_cal_curr.loc[:, 

"Vehicle Front Coordinate"][i].split()[1]) for i in range(speed_cal_curr.shape[0]) ] 
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        #         speed_cal_prev["x_coor_prev"] = [float(speed_cal_prev.loc[:, 

"Vehicle Front Coordinate"][i].split()[0]) for i in range(speed_cal_prev.shape[0]) ] 

        #         speed_cal_prev["y_coor_prev"] = [float(speed_cal_prev.loc[:, 

"Vehicle Front Coordinate"][i].split()[1]) for i in range(speed_cal_prev.shape[0]) ] 

        #         speed_data = pd.merge(speed_cal_curr,speed_cal_prev,   on = "Vehicle 

ID", how = "left") 

        # # check if there are any vehicles just join the network, which does not have 

prev_coor values 

        #         if (speed_data.loc[:, "x_coor_prev"].isnull()).any() : 

        #             for i in speed_data.loc[speed_data.loc[:, 

"x_coor_prev"].isnull()].index: 

        #                  lane_num = int(speed_data.loc[i, "Lane_x"].split('-')[0]) 

        #                  speed_data.loc[i, "x_coor_prev"] = lane_to_cor[lane_num][0] 

        #                  speed_data.loc[i, "y_coor_prev"] = lane_to_cor[lane_num][1] 

        #          

        #         speed_x = speed_data.loc[:, "x_coor_curr"] - speed_data.loc[:, 

"x_coor_prev"] 

        #         speed_y = speed_data.loc[:, "y_coor_curr"] - speed_data.loc[:, 

"y_coor_prev"] 

        #         speed_coor = [[speed_x[i], speed_y[i]] for i in range(len(speed_x))] 

        #         add_data_traj["speed_coor"] = speed_coor 

        #         CV_data = add_data_traj.loc[:, ["Vehicle ID", "Vehicle Front 

Coordinate","speed_coor", "nan", "nan", "Vehicle Type", "Vehicle Length"] ] 

        #         CV_data["max_acc"] = simulation.max_acc 

        #         CV_data["max_decce"] = simulation.max_dec 

        #         CV_data["Vehicle Front Coordinate"] = [ i.split()[0:2] for i in 

(CV_data.loc[:, "Vehicle Front Coordinate"])] 

        #         CV_data.replace(vehicle_type_dict, inplace = True) 

        #         pre_data_traj = add_data_traj 

        

#============================================================================== 

             

        #-----------------------------------------------------------------------------

-----         

                add_data_traj = add_data_traj[out_DataType_Traj_em] 

                add_data_traj.to_csv(simulation.path_output_file + "\\" + 

network_folder + 'Trajectory_data.csv',  header = None,  index = None,  mode='a' ) 

                 

        # run the simulation 

                 

        # Method #5: Accessing all attributes directly using "GetMultipleAttributes" 

(even more faster) 

        # all_veh_attributes are for printing purpose  

                all_veh_attributes = VISSIM.Net.Vehicles.GetMultipleAttributes(('No', 

'VehType', 'acceleration', 'Speed', 'DistanceToSigHead')) 

                for cnt in range(len(all_veh_attributes)): 

                    print ('%.f | %s  |  %s  |  %.2f  |  %.2f  |  %s' % 

(time_step,all_veh_attributes[cnt][0], all_veh_attributes[cnt][1], 

all_veh_attributes[cnt][2], all_veh_attributes[cnt][3], all_veh_attributes[cnt][4])) # 

only display the 2nd column) 

        ## data_vehicles are for AV/CV modeling purpose         

                data_vehicles = VISSIM.Net.Vehicles.GetMultipleAttributes(('No', 

'VehType', 'length','Acceleration','Speed', 'Pos', 

'Hdwy','LeadTargNo','LeadTargType','DistanceToSigHead', 'SignalState','Lane')) 

                dist_stop = (simulation.Desired_speed / 3.6) **2 / 2 / -

(simulation.comf_dec) 

        #data_vehicles: 0- No, 1-vehicle type, 2-length, 3-acceleration, 4-speed, 5-

position, 6-headway, 7-lead No, 8- lead type, 9-distance to signal, 10- signal state, 

11- lane 

                for index in range(len(data_vehicles)): 

        # it is only used for CAV 

                    vehicle = data_vehicles[index] 

                    if (vehicle[1] != CAV): 
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                        continue 

        # There are three mode for vehicles, free flow, signal controlled, and car 

following mode 

        # since the AV logic does not consider signal, we designed a signal controlled 

mode that vehicles are going to decelerate at comfortable deceleration rate when get 

close enough to signal head. 

                    dist_safe = (vehicle[4] / 3.6) **2 / 2 /  -(simulation.comf_dec) 

                     

                    if (vehicle[8] == 'VEHICLE' and leading(vehicle[7],data_vehicles, 

index)): 

                        x_n = vehicle[5] 

                        v_n = vehicle[4] 

                        l_n_1, a_n_1, v_n_1 = leading(vehicle[7],data_vehicles,index)  

                        x_n_1 = x_n + vehicle[6] 

                        ak = auModel.AV_Model( x_n, v_n / 3.6, x_n_1, v_n_1 /3.6, 

a_n_1, l_n_1).cal_acc() 

                        ak = min(ak, (simulation.Desired_speed/  3.6 - v_n / 3.6) * 

simulation.desired_speed_change_rate) 

        

#============================================================================== 

        #                 if v_n_1 < 5 and vehicle[6] < dist_safe + buffer: 

        #                     ak = simulation.comf_dec 

        #                 if vehicle[9] < dist_safe + buffer and (vehicle[10] =='RED' 

or vehicle[10] =='AMBER'):     

        #                     ak = simulation.comf_dec 

        

#============================================================================== 

                        record = [[time_step, vehicle[0],vehicle[1], x_n,vehicle[3], 

v_n / 3.6, x_n_1, v_n_1 /3.6, a_n_1, l_n_1,x_n_1 - x_n,vehicle[11], ak, 'car 

following']] 

                        vehicle_ID.append(record[0][1]) 

                        vehicle_acc.append(record[0][12])  

                    elif vehicle[9] < dist_safe + buffer and (vehicle[10] =='RED' or 

vehicle[10] =='AMBER'):     

                        ak = simulation.comf_dec; 

                        record = [[time_step, vehicle[0], vehicle[1], 

vehicle[5],vehicle[3], vehicle[4] / 3.6,vehicle[5] + vehicle[9] , 0 , 0 ,0,vehicle[9], 

vehicle[11], ak, 'signal']] 

                        vehicle_ID.append(record[0][1]) 

                        vehicle_acc.append(record[0][12])  

                    elif not vehicle[11] in left_lane: 

                        ak = min(simulation.comf_acc, (simulation.Desired_speed  - 

vehicle[4]) / 3.6 *simulation.desired_speed_change_rate ) 

                        record = [[time_step, vehicle[0],vehicle[1], 

vehicle[5],vehicle[3], vehicle[4] / 3.6,0 , 0 ,0, 0 ,0 ,vehicle[11], ak, 'free']] 

                        vehicle_ID.append(record[0][1]) 

                        vehicle_acc.append(record[0][12])  

                    else: 

                        record = [[time_step, vehicle[0],vehicle[1], 

vehicle[5],vehicle[3], vehicle[4] / 3.6,0 , 0 ,0, 0 ,0 ,vehicle[11], 999, 'VISSIM']] 

                        

                    log_file = log_file.append(pd.DataFrame(record,  columns = 

log_col),ignore_index=True) 

                 

                ## update the traj file, here plus 0.01  

                vehicle_ID, vehicle_acc = merge_array(vehicle_ID, vehicle_acc, 

vehicle_ID2, vehicle_acc2) 

                traj = pd.DataFrame({'a':vehicle_ID,'b':vehicle_acc}) 

                traj.to_csv(simulation.path_output_file + "\\Trajectory.txt", 

header=None, index = None, sep=' ', mode='w') 

                log_file.to_csv(simulation.path_output_file + "\\" + network_folder + 

"log.csv", header = None,  index = None,  mode='a') 
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                """ 

                LC: Xi,the function bellow will need a dataFrame containing the 

following  

                headers. Make sure that the headers names match. If you add extra 

headers it does not matter. 

                 

                 

                         'No', 

                         'pos', # List [UTM easting (float), UTM northing (float)] 

                         'vel', # List [UTM easting dot (float), UTM northing dot 

(float)] 

                         'pos_rms', # List [UtM easting (float), UTM northing (float)] 

                         'vel_rms', # List [UTM easting dot (float), UTM northing dot 

(float)] 

                         'veh_type', # 0 or 1 -- 0 for CNV, 1 for CAV 

                         'veh_len', # float 

                         'max_accel', # float 

                         'max_decel', # float 

                         ]) 

                """ 

                if sendMessage: 

        #            print('hi') 

                    if len(CV_data) > 0: 

                        messageManager.send(CV_data) 

        #                print(time_step) 

        #                if time_step == 10: 

        #                    print(time_step) 

        #                    import pdb;pdb.set_trace() 

            time_step += 1    

            time.sleep(simulation.time_sleep) 

            VISSIM.Simulation.RunSingleStep() 

                 

        ''' 

        Signal control part 

         

        SC_number = 1z 

        SG_number = 1 

        SignalController = VISSIM.Net.SignalControllers.ItemByKey(SC_number) 

        SignalGroup = SignalController.SGs.ItemByKey(SG_number) 

        SignalGroup.SetAttValue("SigState", "GREEN") 

        SignalGroup.SetAttValue("ContrByCOM", False) 

         

        ''' 

        VISSIM.Simulation.Stop() 

         

        print(time.time() - start_time) 

           

        Filename = os.path.join(simulation.path_of_network, simulation.network_file) 

        VISSIM.SaveNetAs(Filename) 

        Filename = os.path.join(simulation.path_of_network, simulation.layout_file) 

        VISSIM.SaveLayout(Filename) 

        VISSIM = None 

 

 

 

 

 

 

 

 

 

 



   Evaluation of Advanced Vehicle and Communication 
Technologies through Traffic Microsimulation 

   

93 

 

 

 

AV Model 

 

# -*- coding: utf-8 -*- 

""" 

Created on Tue Nov  5 11:17:55 2019 

@author: xiduan 

""" 

 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Nov  4 20:21:47 2019 

@author: xiduan 

""" 

import numpy as np 

class AV_Model (): 

     

    def __init__(self, x_n, v_n, x_n_1, v_n_1, a_n_1, l_n_1, d_n = -6, d_n_1= -6, k = 

1, k_a = 1, k_v = 0.58, k_d = 0.1,de_x = 300, acc_max = 3 ,tau = 0.1 ): 

        ''' 

        vehicle n is the subject, vehicle n-1 is the leading vehicle 

       :param x_n  

           location of vehicle n 

       :param v_n  

           the speed of vehicles n 

       :param x_n_1 

            the location of vehicles n-1 

       :param v_n_1 

            the speed of vehicles n-1 

       :param a_n_1 

            the acceleration of vehicles n-1  

       :param l_n_1 

            the length of vehicles n-1 

       :param d_n  

           the maximum deceleration of vehicles n 

       :param d_n_1  

           the maximum deceleration of vehicles n-1 

       :param k default: 1.0  

          model parameter 

       :param k_a default: 1.0 

          model parameter 

       :param k_v default: 0.58 

           model parameter 

       :param k_d default: 0.1 

           model parameter 

       :param de_x  

           the maximum detection distance of autonomous vehicle 

       :param acc_max 

           the maximum acceleration of vehicle n 

       :param tau  

           the reaction time of AV 

        ''' 

        self.tau = tau  

        self.x_n = x_n 

        self.v_n = v_n 

        self.x_n_1 = x_n_1 

        self.v_n_1 = v_n_1 

        self.a_n_1 = a_n_1 

        self.l_n_1 = l_n_1 

        self.d_n = d_n 

        self.d_n_1 = d_n_1 

        self.k = k 
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        self.k_a = k_a  

        self.k_v = k_v  

        self.k_d = k_d  

        self.de_x = de_x 

        self.acc_max = acc_max 

     

    def cal_acc(self): 

         

        s_safe = (self.v_n_1)**2 / 2* (1 / self.d_n -  1 / self.d_n_1) 

         

        s_system =  self.v_n *  self.tau 

        s_min = 1.5 + self.l_n_1 

        s_ref = np.max([s_system,s_safe,s_min]) 

        

        acc_t  =  self.k_a *  self.a_n_1  +  self.k_v * ( self.v_n_1 - self.v_n) + 

self.k_d * ((self.x_n_1 - self.x_n)  - s_ref) 

        # delta_x is the space 

        delta_x = np.min([(self.x_n_1 - self.x_n - self.l_n_1) + self.v_n * self.tau - 

self.v_n_1**2 /2 / self.d_n_1,self.de_x]) 

        # v_max is the maximum safe speed 

        v_max = (-2*self.d_n_1 * delta_x)**0.5 

         

        acc = np.min([acc_t, self.k * (v_max - self.v_n),self.acc_max]) 

         

         

       

         

        return acc 
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Appendix D: EDM Source Code (drivermodel.dll) written in C++ 
 

/*==========================================================================*/ 

/*  DriverModel.cpp                                  DLL Module for VISSIM  */ 

/*                                                                          */ 

/*  Interface module for external driver models.                            */ 

/*  Dummy version that does nothing (uses VISSIM's internal model).         */ 

/*                                                                          */ 

/*  Version of 2018-09-13                                   XI DUAN    

*/ 

/*==========================================================================*/ 

 

#include "DriverModel.h" 

#include <fstream> //std:ifstream 

#include <iostream> 

#include <string> 

#include <sstream> 

#include <algorithm> 

using namespace std; 

 

/*==========================================================================*/ 

// # 1 user working directory 

 

/*Trajectory.txt, format as vehicles_ID, Vehicle_acceleration */ 

char inputPath[] = "P:\\STRIDE on VISSIM CAV\\code\\output_AV_Saif\\Trajectory.txt"; 

char outputPath[] = "P:\\STRIDE on VISSIM CAV\\code\\output_AV_Saif\\"; 

 

// # 2 initial parameters 

double time_step = 0; 

 

long    vehicle_color = RGB(0, 0, 0); 

 

// # 3 output parameters 

// note: the parameters with preceding Veh_ is output 

long  VehID; 

//the input_ID and input_acceleration will read from txt from python, **note: the size 

of the array 

long input_ID[1000]; 

double  input_acceleration[1000]; 

double veh_speed = 0; 

double  desired_velocity     = 20; 

long    turning_indicator    = 0; 

long  lane = 0; 

double laneWidth; 

double veh_lat_po = 0; 

double time = 0; 

// the value sent by VISSIM 

 

double  veh_acceleration = 0; 

double veh_lane_angle = 0; 

long veh_target_lane = 0; 

long veh_active_lane = 0; 

// index_num and size_num are used to assign the acceleration to corresponding vehicle 

ID   

int index_num = 0; 

int size_num = 0; 

// #3 control parameters, this block is not used 

// these are arrays used for latitude and longitude trajectory control 

/*double  desired_acceleration[] = { 3,3,3,3,3,3,3,3, 1.5, 1.2, 1.5, 1.2, 1.2,

 0.8, 0.8, 0.8, 0.8, 0.8, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.5,

 0.5, 0.5, 0.3, 0.3, 0.2, 0.2, 0.2, -3, -3, -3, -2, -2,
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 -2, -1.7, -1.6, -1.6, -1.5, -1.5, -1.5, -1, -0.5, -0.5, -0.2, -0.1,

 1, 1, 1, 1.2, 1.2, 1.2, 1.2, -1, -1, 0, 0 

}; 

double  desired_lane_angle[] = { 1, 1, 1, 1, 1, 1, 1, 1,

 -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1,

 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1 

}; 

long    active_lane_change[] = { 1, 1, 1, 1, 1, 1, 1, 1,

 -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1,

 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1 

}; 

long    rel_target_lane[] = { 1, 1, 1, 1, 1, 1, 1, 1, -1,

 -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1,

 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1 

};*/ 

int curren_time = -1; 

double  lane_angle =1; 

long    active_lane = 0; 

long    target_lane = 0; 

double desired_acceleration = 0; 

// define the input file of acceleration input 

ifstream myfile; 

 

 

// Pointers used for the opening of ".txt" files. 

// file_rm used for general log 

// file_lt_in show the value pass from VISSIM 

// file_lt_out shows the value used in the dll 

FILE *file_rm = NULL; 

FILE *file_lt_in = NULL; 

FILE *file_lt_out = NULL; 

 

// The function is used to return the index of key in the array, find the acceleration 

for the corresponding ID 

int find(long arr[], int n, long key) 

{ 

 int index = -999; 

 

 for (int i = 0; i < n; i++){ 

  if (arr[i] == key){ 

   index = i; 

   break; 

  }  

 } 

 return index; 

} 

 

/*==========================================================================*/ 

 

BOOL APIENTRY DllMain (HANDLE  hModule, 

                       DWORD   ul_reason_for_call, 

                       LPVOID  lpReserved) 

{ 

  switch (ul_reason_for_call) { 
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      case DLL_PROCESS_ATTACH: 

      case DLL_THREAD_ATTACH: 

      case DLL_THREAD_DETACH: 

      case DLL_PROCESS_DETACH: 

         break; 

  } 

  return TRUE; 

} 

 

/*==========================================================================*/ 

 

DRIVERMODEL_API  int  DriverModelSetValue (long   type, 

                                           long   index1, 

                                           long   index2, 

                                           long   long_value, 

                                           double double_value, 

                                           char   *string_value) 

{ 

  /* Sets the value of a data object of type <type>, selected by <index1> */ 

  /* and possibly <index2>, to <long_value>, <double_value> or            */ 

  /* <*string_value> (object and value selection depending on <type>).    */ 

  /* Return value is 1 on success, otherwise 0.                           */ 

 

  switch (type) { 

    case DRIVER_DATA_PATH                   : 

   

  //will need to update file path 

  strcat(outputPath, "AV_Log.txt"); 

  //strcat(outputPath, "lateral_in.txt"); 

  //strcat(outputPath, "lateral_out.txt"); 

  fopen_s(&file_rm, outputPath, "wt"); 

  //fopen_s(&file_lt_in, "C:\\Users\\xiduan\\OneDrive - University of 

Florida\\UF\\research\\2.VISSIM AV&CV\\Dll code\\lateral_in.txt", "wt"); 

  //fopen_s(&file_lt_out, "C:\\Users\\xiduan\\OneDrive - University of 

Florida\\UF\\research\\2.VISSIM AV&CV\\Dll code\\lateral_out.txt", "wt"); 

  //Statement to write data to the text file. To change type of data 

output, change the character after %: s -string; d - long; f - double 

  if (file_rm != NULL) { fprintf_s(file_rm, "101 DRIVER_DATA_PATH: \t%s, 

\n", string_value); } 

    case DRIVER_DATA_TIMESTEP               : 

  time_step = double_value; 

    case DRIVER_DATA_TIME                   : 

  time = double_value; 

      return 1; 

    case DRIVER_DATA_USE_UDA                : 

      return 0; /* doesn't use any UDAs */ 

                /* must return 1 for desired values of index1 if UDA values are to be 

sent from/to VISSIM */ 

    case DRIVER_DATA_VEH_ID                 : 

 

 // store the VehID information here 

  VehID = long_value; 

  // read the trajectory from the txt file defined before 

 

   

  

   

  return 1; 

 

    case DRIVER_DATA_VEH_LANE               : 

  // get the current lane number from VISSIM 

  lane = long_value; 

  return 1; 
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    case DRIVER_DATA_VEH_ODOMETER           : 

    case DRIVER_DATA_VEH_LANE_ANGLE         : 

  veh_lane_angle = double_value; 

  return 1; 

    case DRIVER_DATA_VEH_LATERAL_POSITION   : 

  // get the current lateral position from VISSIM 

  veh_lat_po = double_value; 

  return 1; 

    case DRIVER_DATA_VEH_VELOCITY           : 

  // get the speed 

  veh_speed = double_value; 

  return 1; 

    case DRIVER_DATA_VEH_ACCELERATION       : 

  // get the acceleration 

  veh_acceleration = double_value; 

  return 1; 

    case DRIVER_DATA_VEH_LENGTH             : 

    case DRIVER_DATA_VEH_WIDTH              : 

    case DRIVER_DATA_VEH_WEIGHT             : 

    case DRIVER_DATA_VEH_MAX_ACCELERATION   : 

      return 1; 

    case DRIVER_DATA_VEH_TURNING_INDICATOR  : 

      turning_indicator = long_value; 

      return 1; 

    case DRIVER_DATA_VEH_CATEGORY           : 

    case DRIVER_DATA_VEH_PREFERRED_REL_LANE : 

    case DRIVER_DATA_VEH_USE_PREFERRED_LANE : 

      return 1; 

    case DRIVER_DATA_VEH_DESIRED_VELOCITY   : 

      desired_velocity = double_value; 

      return 1; 

    case DRIVER_DATA_VEH_X_COORDINATE       : 

    case DRIVER_DATA_VEH_Y_COORDINATE       : 

    case DRIVER_DATA_VEH_Z_COORDINATE       : 

    case DRIVER_DATA_VEH_REAR_X_COORDINATE  : 

    case DRIVER_DATA_VEH_REAR_Y_COORDINATE  : 

    case DRIVER_DATA_VEH_REAR_Z_COORDINATE  : 

    case DRIVER_DATA_VEH_TYPE               : 

      return 1; 

    case DRIVER_DATA_VEH_COLOR              : 

      vehicle_color = long_value; 

      return 1; 

    case DRIVER_DATA_VEH_CURRENT_LINK       : 

      return 0; /* (To avoid getting sent lots of DRIVER_DATA_VEH_NEXT_LINKS messages) 

*/ 

                /* Must return 1 if these messages are to be sent from VISSIM!         

*/ 

    case DRIVER_DATA_VEH_NEXT_LINKS         : 

    case DRIVER_DATA_VEH_ACTIVE_LANE_CHANGE : 

  veh_active_lane = long_value; 

  return 1; 

    case DRIVER_DATA_VEH_REL_TARGET_LANE    : 

  veh_target_lane = long_value; 

  return 1; 

    case DRIVER_DATA_VEH_INTAC_STATE        : 

    case DRIVER_DATA_VEH_INTAC_TARGET_TYPE  : 

    case DRIVER_DATA_VEH_INTAC_TARGET_ID    : 

    case DRIVER_DATA_VEH_INTAC_HEADWAY      : 

    case DRIVER_DATA_VEH_UDA                : 

    case DRIVER_DATA_NVEH_ID                : 

    case DRIVER_DATA_NVEH_LANE_ANGLE        : 

    case DRIVER_DATA_NVEH_LATERAL_POSITION  : 

    case DRIVER_DATA_NVEH_DISTANCE          : 
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    case DRIVER_DATA_NVEH_REL_VELOCITY      : 

    case DRIVER_DATA_NVEH_ACCELERATION      : 

    case DRIVER_DATA_NVEH_LENGTH            : 

    case DRIVER_DATA_NVEH_WIDTH             : 

    case DRIVER_DATA_NVEH_WEIGHT            : 

    case DRIVER_DATA_NVEH_TURNING_INDICATOR : 

    case DRIVER_DATA_NVEH_CATEGORY          : 

    case DRIVER_DATA_NVEH_LANE_CHANGE       : 

    case DRIVER_DATA_NVEH_TYPE              : 

    case DRIVER_DATA_NVEH_UDA               : 

    case DRIVER_DATA_NVEH_X_COORDINATE      : 

    case DRIVER_DATA_NVEH_Y_COORDINATE      : 

    case DRIVER_DATA_NVEH_Z_COORDINATE      : 

    case DRIVER_DATA_NVEH_REAR_X_COORDINATE : 

    case DRIVER_DATA_NVEH_REAR_Y_COORDINATE : 

    case DRIVER_DATA_NVEH_REAR_Z_COORDINATE : 

    case DRIVER_DATA_NO_OF_LANES            : 

    case DRIVER_DATA_LANE_WIDTH             : 

    case DRIVER_DATA_LANE_END_DISTANCE      : 

    case DRIVER_DATA_CURRENT_LANE_POLY_N    : 

    case DRIVER_DATA_CURRENT_LANE_POLY_X    : 

    case DRIVER_DATA_CURRENT_LANE_POLY_Y    : 

    case DRIVER_DATA_CURRENT_LANE_POLY_Z    : 

    case DRIVER_DATA_RADIUS                 : 

    case DRIVER_DATA_MIN_RADIUS             : 

    case DRIVER_DATA_DIST_TO_MIN_RADIUS     : 

    case DRIVER_DATA_SLOPE                  : 

    case DRIVER_DATA_SLOPE_AHEAD            : 

    case DRIVER_DATA_SIGNAL_DISTANCE        : 

    case DRIVER_DATA_SIGNAL_STATE           : 

    case DRIVER_DATA_SIGNAL_STATE_START     : 

    case DRIVER_DATA_SPEED_LIMIT_DISTANCE   : 

    case DRIVER_DATA_SPEED_LIMIT_VALUE      : 

      return 1; 

    case DRIVER_DATA_DESIRED_ACCELERATION : 

  desired_acceleration = double_value; 

  return 1; 

    case DRIVER_DATA_DESIRED_LANE_ANGLE : 

  lane_angle = double_value; 

      return 1; 

    case DRIVER_DATA_ACTIVE_LANE_CHANGE : 

     // get the active lane change value from VISSIM 

  active_lane = long_value; 

      return 1; 

    case DRIVER_DATA_REL_TARGET_LANE : 

  target_lane = long_value; 

      return 1; 

    default : 

      return 0; 

  } 

} 

 

/*--------------------------------------------------------------------------*/ 

 

DRIVERMODEL_API  int  DriverModelGetValue (long   type, 

                                           long   index1, 

                                           long   index2, 

                                           long   *long_value, 

                                           double *double_value, 

                                           char   **string_value) 

{ 

  /* Gets the value of a data object of type <type>, selected by <index1> */ 

  /* and possibly <index2>, and writes that value to <*double_value>,     */ 
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  /* <*float_value> or <**string_value> (object and value selection       */ 

  /* depending on <type>).                                                */ 

  /* Return value is 1 on success, otherwise 0.                           */ 

 

  switch (type) { 

    case DRIVER_DATA_STATUS : 

      *long_value = 0; 

      return 1; 

    case DRIVER_DATA_VEH_TURNING_INDICATOR : 

      *long_value = turning_indicator; 

      return 1; 

    case DRIVER_DATA_VEH_DESIRED_VELOCITY   : 

  

  /*if (find(input_ID, size_num, VehID) == -999) { 

   *double_value = 2; 

  } 

  else { 

    

    

   index_num = find(input_ID, size_num, VehID); 

   *double_value = 10; 

  } */ 

  *double_value = desired_velocity; 

 

      return 1; 

    case DRIVER_DATA_VEH_COLOR : 

      *long_value = vehicle_color; 

      return 1; 

    case DRIVER_DATA_VEH_UDA : 

      return 0; /* doesn't set any UDA values */ 

    case DRIVER_DATA_WANTS_SUGGESTION : 

  

  *long_value = 1; 

      return 1; 

    case DRIVER_DATA_DESIRED_ACCELERATION : 

 

  // also need to change the directory 

  myfile.open(inputPath); 

 

  /*read the trajectory.txt file here, store the ID its corresponding 

acceleration as array*/ 

  for (int i = 0; !myfile.eof(); i++) { 

 

   myfile >> input_ID[i] >> input_acceleration[i]; 

   size_num = i; 

  } 

  myfile.close(); 

 

  /*if the Vehicle ID is not in the trajectory.txt, pass the default value 

from VISSIM or constant 0.3 to it.*/ 

  if (find(input_ID, size_num, VehID) == -999) { 

   *double_value = desired_acceleration; 

  } else { 

   /* if we could find corresponding vehicle, pass the designed 

acceleration to the correspoing vehicle.*/ 

   index_num = find(input_ID, size_num, VehID); 

  *double_value = input_acceleration[index_num]; 

  }  

   

  return 1; 

    case DRIVER_DATA_DESIRED_LANE_ANGLE : 

     // *double_value = desired_lane_angle[curren_time]; 

 //*double_value = lane_angle; 
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   *double_value = lane_angle; 

   

   

  return 1; 

    case DRIVER_DATA_ACTIVE_LANE_CHANGE : 

      //*long_value = active_lane_change[curren_time]; 

  //*long_value =1; 

  /*if (veh_lane_num == 2 && veh_lat_po == 0.4) { 

   *long_value = 0; 

  } 

  else { 

   *long_value = 1; 

  } */ 

  *long_value = active_lane; 

  /*if (curren_time == 10) { 

   *long_value = 1; 

  } 

  else if (curren_time == 80) { 

   *long_value = -1; 

  } 

  */ 

      return 1; 

    case DRIVER_DATA_REL_TARGET_LANE : 

    // *long_value = rel_target_lane[curren_time]; 

   

  /*if (curren_time == 10) { 

   *long_value = 1; 

  } 

  else if (curren_time == 80) { 

   *long_value = -1; 

  } 

  */ 

  *long_value = target_lane; 

  return 1; 

    case DRIVER_DATA_SIMPLE_LANECHANGE : 

      *long_value = 1; 

      return 1; 

    case DRIVER_DATA_USE_INTERNAL_MODEL: 

      *long_value = 0; /* must be set to 0 if external model is to be applied */ 

      return 1; 

    case DRIVER_DATA_WANTS_ALL_NVEHS: 

      *long_value = 0; /* must be set to 1 if data for more than 2 nearby vehicles per 

lane and upstream/downstream is to be passed from VISSIM */ 

      return 1; 

    case DRIVER_DATA_ALLOW_MULTITHREADING: 

      *long_value = 0; /* must be set to 1 to allow a simulation run to be started 

with multiple cores used in the simulation parameters */ 

      return 1; 

    default: 

      return 0; 

  } 

} 

 

/*==========================================================================*/ 

 

DRIVERMODEL_API  int  DriverModelExecuteCommand (long number) 

{ 

  /* Executes the command <number> if that is available in the driver */ 

  /* module. Return value is 1 on success, otherwise 0.               */ 
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  switch (number) { 

    case DRIVER_COMMAND_INIT : 

  if (file_rm != NULL) { fprintf_s(file_rm, "**Initialization:\t%d 

time_step\t%.2f time: %.1f\n:", VehID,time_step,time); } 

  if (file_rm != NULL) { fprintf_s(file_rm, "Time: %.1f\tVehicle ID: 

%d\tLane: %d\tSpeed: %.4f\tAccel: %.4f\tLC_angle %0.3f\n", time, VehID, lane, 

veh_speed, veh_acceleration, veh_lane_angle); } 

   

   

  return 1; 

    case DRIVER_COMMAND_CREATE_DRIVER : 

  if(file_rm != NULL) { fprintf_s(file_rm, "*******************Create 

Driver ID:\t%d time: %.1f\n", VehID,time); } 

  curren_time = -1; 

   

      return 1; 

    case DRIVER_COMMAND_KILL_DRIVER : 

  if (file_rm != NULL) { fprintf_s(file_rm, "*******************Kill Driver 

ID:\t%d \n", VehID); } 

  return 1; 

    case DRIVER_COMMAND_MOVE_DRIVER : 

  myfile.open(inputPath); 

   

  for (int i = 0; !myfile.eof(); i++) { 

    

   myfile >>input_ID[i] >> input_acceleration[i]; 

   size_num = i; 

  } 

  myfile.close(); 

   

  if (file_rm != NULL) { fprintf_s(file_rm, "ID: %d\t acceleration: %f.3\t 

speed: %d\t\n", VehID, veh_acceleration,size_num); } 

  if (file_lt_out != NULL) { fprintf_s(file_lt_out, "acc1: %.3f \t acc2: 

%.3f\t acc3: %.3f\tacc4: %.3f\tacc5: %.3f\tacc6: %.3f\n", input_acceleration[0], 

input_acceleration[1], input_acceleration[2], input_acceleration[3], 

input_acceleration[4], input_acceleration[5]); } 

  if (file_lt_in != NULL) { fprintf_s(file_lt_in, "ID 1 %d\t ID 2 %d\tID 3 

%d\tID 4 %d\tID 5 %d\tID 6 %d\t\n",input_ID[0], input_ID[1], input_ID[2], input_ID[3], 

input_ID[4], input_ID[5]) ; } 

  curren_time += 1; 

  return 1; 

    default : 

      return 0; 

  } 

} 

 

 

 

 

/*==========================================================================*/ 

/*  End of DriverModel.cpp                                                  */ 

/*==========================================================================*/ 
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Appendix E: Urban Freight Transport and Its Effects 
 

Introduction and Background Information 

When considering emerging technology, and specifically AVs, the ability to test truck fleets on 

fully controlled access facilities (i.e. freeways) has seen great attention and is likely one of the 

first business cases with a high chance of both technical and economic success.  However, there 

is also vital need for local, last-mile delivery innovations, especially with the expectation of fast 

delivery paired with warehouses located outside the city. The last-mile delivery remains a key 

issue to be solved. This literature review examines impacts of delivery trucks, Urban Freight 

Transport (UFT), on congestion, air pollution, and more. This is followed by a discussion on 

mobile access hubs, an innovative solution to the growing need to improve efficiency of urban 

freight deliveries that likely fits well with the emerging technology paradigm.  

Transportation is the top source of greenhouse gases in the United States, and freight trucking 

contributes 23 percent of these emissions.1 With rising urban populations and e-commerce 

growth, the proportion of these emissions attributed to delivery freight can reach as high as 

40% of a city’s transportation carbon dioxide emissions and as high as 50% of air pollutants. 2 

While recognizing these negatives it is also acknowledged that goods are essential to city 

residents and businesses, and the demand for delivery is increasing along with the growth in 

city population and e-commerce. Fulfillment times – the length of time from the placement of 

the order to its delivery – are getting shorter since delivery companies are getting more 

efficient and customers are preferring increasingly faster fulfillment. Faster fulfillment times 

tend to increase the number of single-parcel deliveries direct to customers and thus increase 

more vehicles on the road.7 As a result, there is a major shift from business-to-business (B2B) 

 
1 Popovich, Nadja and Denise Lu. “The Most Detailed Map of Auto Emissions in America”. New York 
Times. 10 Oct. 2019.  

2 Lindeman, Tracey. ”Can ‘nests’ and eco bikes reduce the environmental impact of parcel delivery in 
cities?” The Guardian. 4 Nov. 2019. Accessed 24 Nov. 2019. 
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shipping to business-to-customer (B2C) shipping.  Therefore, delivery companies such as UPS 

and FedEx must implement innovative and creative delivery solutions to remain competitive, 

efficiently, and sustainably. Considering this need, we will discuss the impact of UFT and the 

current and future freight delivery innovations that attempt to address these impacts.  

E-Commerce Growth and Fast Delivery  

In theory, e-commerce can be good for the environment since it can reduce the number of 

vehicular trips to the store by outsourcing these trips to a single pickup and delivery (P&D) 

vehicle.3 However, these potential environmental benefits disappear as fulfillment times get 

shorter. The growth of e-commerce paired with two-day, next-day, same-day, and shorter 

delivery expectations has caused the proliferation of P&D vehicles into busy city centers, often 

during rush-hour.2 Since 2010, there has been a 15 percent e-commerce growth year-over-

year.4 At the same time, consumers’ expectations of how fast their package should be delivered 

is also rising. Amazon is a major reason for these fast delivery expectations, and the 

expectations are not going away. It is worth noting that 71% of millennials are Amazon Prime 

members and live in urban areas.5 Because of delivery-time deadlines, P&D vehicles sometimes 

leave the distribution center half-empty,2 which leads directly to decreased efficiency. If 

unchanged, this situation will only get worse, as the proportion of the world’s population living 

in cities, and thus ordering packages to be delivered in cities, is expected to grow to from 55% 

to 68% by 2050.6 Furthermore, urbanization is often associated with an increase in the average 

affluence in a city, and those with more disposable income tend to order more online goods. 7 

 
3 Pandey, Erica. “The climate stakes of speedy delivery.” Axios. 21 Jun. 2019. Accessed 10 Dec. 2019.  
 
4 “The Final 50 feet Urban Goods Delivery System.” Univ. of Washington Supply Chain Transport & 
Logistics Center. Seattle Department of Transportation. 
5 Patel, Ketul. “Why urban fulfillment centers?: How retailers are adapting to connected consumers.” 
Deloitte Perspectives. 2019. Accessed 25 Nov. 2019. 
https://www2.deloitte.com/us/en/pages/consulting/articles/why-urban-fulfillment-centers-retail.html. 
6 Malladi, Satya, et al. “Stochastic Fleet Optimization: Evaluating Electromobility in Urban Logistics.” 3 
Oct. 2019. 

7 UPS The Road to Sustainable Urban Logistics: A 2017 UPS/GreenBiz Research Study. GreenBiz. 2017. 

https://www2.deloitte.com/us/en/pages/consulting/articles/why-urban-fulfillment-centers-retail.html
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Consequently, if the people moving to a city are more affluent, the number of packages 

ordered will increase even more.  

Environmental Effects of UFT 

Households now receive more shipments than businesses; thus, P&D vehicles are increasingly 

driving on neighborhood streets, increasing congestion everywhere. 8 Most P&D vehicles 

worldwide in urban areas make at least 100 brief stops a day, contributing to congestion, air 

pollution, and expensive traffic delays.2 For example, in part because of the increase in UFT, 

cars in the busiest parts of Manhattan move at 23 mph, 7 miles slower than in 2000.8 P&D 

vehicles contribute to congestion, and so reducing stem time and distance (the time and 

distance between the distribution center and the area in which the P&D vehicles makes stops 

for pickup and/or delivery), vehicle miles travelled (VMT), and altering routing and the 

sequence of stops may help alleviate the negative effects that P&D vehicles have on pollution.  

Additionally, straining the P&D process is the transport of perishable goods, such as produce 

and refrigerated and frozen food. It is expected that these goods will be delivered even more 

expeditiously than other goods, e.g., same day or within hours.8 Perishables often require 

temperature controlled transport and have special handling requirements, making it difficult to 

transport perishables (e.g., temperature controlled food) and non-perishables (e.g., consumer 

electronics) in the same vehicle.  This fact increases single-parcel delivery, further decreasing 

the ability for delivery agencies to package and deliver efficiently. Ironically, people love the 

convenience of getting their packages quickly, but they do not like the congestion and air 

pollution that accompanies deliveries. As an indication of the rapid growth of fast fulfillment 

parcel P&D, it is reported that in some New York City neighborhoods, Amazon’s boxes are 

stacked and sorted on the sidewalk, essentially “using public space as their private 

warehouse.”8 We remark that such use of public space is quite common in the mega-cities 

throughout China and Southeast Asia.   

 
8 Haag, Matthew, and Winnie Hu. “11.5 Million Packages a Day: The Internet Brings Chaos to N.Y. 
Streets”. New York Times. 27 Oct. 2019. Accessed 7 Nov. 2019. 
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Further contributing to the environmental effects of the increased inefficiency caused by fast 

deliveries is the warehouse space and packing materials needed for the deliveries. As of June 

2019, about 225 million square feet of warehouse space was under construction in the U.S., 

and many of these warehouses are being built outside the city center.3 All of this warehouse 

space needs light, heat, and air conditioning, which all costs money and adds to our 

environmental impact. The packing material that goes into delivery boxes is additionally a 

major driver of the global plastics crisis.3 

As the demand for package deliveries and particularly the demand for fast deliveries grows, it is 

essential that delivery agencies work to implement economically feasible, efficient, and 

environmentally sustainable solutions to alleviate the air pollution caused by P&D as much as 

possible. With options such as parcel hubs, self-driving trucks, delivery lockers, autonomous 

satellite vehicles, and more, there is potential to change the scope of deliveries in the United 

States and its impact on congestion and pollution.  

Freight Effects on the Roadway 

In a study on air pollution related to freight, it was determined that trucking is the most harmful 

mode of goods transport relative to air, rail, and ocean shipping.9 The US Freight Transportation 

Forecast predicts 27 percent increase in P&D between 2016 and 20209; therefore, many city 

agencies are looking into various methods to decrease related congestion. For instance, New 

York City’s transportation commissioner said that the city is experimenting with enforcement 

and creative curb management.8 Growing freight demand increases recurring congestion at 

bottlenecks between freight hubs caused by converging traffic at highway intersections and 

railroad junctions.10  

 
9 Organization for Economic Co-operation and Development. 1997. 
http://www.oecd.org/environment/envtrade/2386636.pdf 

10 “Freight and Congestion.” FHWA. Freight and Management Operations. 1 Feb. 2017. Accessed 7 Nov. 
2019. https://ops.fhwa.dot.gov/freight/freight_analysis/freight_story/congestion.htm 

http://www.oecd.org/environment/envtrade/2386636.pdf
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The Federal Highway Association attributes 947,000 hours of vehicle delay to delivery trucks 

parked curbside in dense urban areas where office and store buildings lack off-street loading; 

limitations on delivery times exacerbate this issue.11   

UPS, FedEx, and Amazon: The Need for Change and Innovative Delivery Solutions 

UPS recognizes that the current methods for delivery packages is inadequate to serve current 

and future needs of P&D, considering the impact on the environment and the growing demand 

for P&D services. Not only is the demand for P&D growing, but the demand for fast deliveries is 

growing. As curb-space becomes in higher demand by P&D vehicles, rideshare vehicles, and 

more, UPS and FedEx P&D vehicles are parking wherever they can find somewhere to stop. As a 

consequence of double parking on streets, blocking bus and bike lanes8, UPS and FedEx are 

being fined. In New York City alone, FedEx incurred $14.9 million, and UPS $33.8 million, in 

parking violation fines in 2018.12 

UPS Recognizes the Need for Improvement in Deliveries 

In UPS’s 2018 Progress Report, the CEO’s message continually mentions how the interrelated 

topics of e-commerce, urbanization, and climate change are greatly shifting both markets and 

everyday life. 13 Thus, since 2009, UPS has invested more than $1 billion in alternative ways to 

mitigate the congestion and pollution emitted by their P&D vehicles in dense urban areas.13 

UPS has set an “ambitious” goal to reduce the absolute greenhouse gas emissions of its global 

ground operations by 12% by 2025. In order to accomplish this goal, UPS is exploring alternative 

fuel and advanced technology vehicles and infrastructure globally and is collaborating with 

cities to create innovative last-mile delivery solutions.13  

 
11 Urban, Angela. “With online shopping on the rise, cities look to address congestion impacts of 

deliveries.” Mobility Lab. 13 Apr. 2017. Accessed 19 Nov. 2019. 

 https://mobilitylab.org/2017/04/13/role-of-deliveries-in-congestion/ 

12 Baker, Linda. “UPS hit with $33.8 million in NYC parking fines; FedEx, $14.9 million.” Freight Waves. 22 
Mar. 2019. Accessed 21 Nov. 2019. 

13 UPS Creating Our Tomorrow, Sustainably: 2018 Corporate Sustainability Progress Report. UPS. 2018.  

https://mobilitylab.org/2017/04/13/role-of-deliveries-in-congestion/
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In its sustainability report, UPS reiterates the importance of finding innovative solutions to 

change the scope of delivering packages: 

Crowded streets, with no parking available and poor curbside access to 

buildings have become iconic images of urban living. At the same time, city 

goals to promote greater quality of life, and reduce air pollution and 

congestion often are accompanied by regulations focused on personal vehicle 

use, without regard on the impact on commercial vehicles. … When combined 

effectively, consolidated shipments on environmentally-focused vehicles using 

data-driven routing can provide a step forward.7  

Because UPS recognizes the need for delivery innovations, they employ various methods, such 

as using delivery lockers, eBike fleets, alternative fuel vehicles, additive manufacturing, and 

more.7 The company also has 17 warehouse projects underway, totaling more than 5 million 

square feet, to increase capacity and efficiency for business to business and business to 

consumer growth.4 

The Role of Regulation 

Government regulation can both positively and negatively affect last mile delivery logistics. In 

Santiago, Chile, the city has dedicated parking spots for freight vehicles during certain hours, 

helping to lessen congestion and improve efficiency. 14 Carbon taxes also have the potential to 

positively affect the environmental effects of freight transport. A carbon tax could encourage 

companies to be more efficient in their vehicle routing and stop sequencing. Alternatively, 

government regulation in Latin America has been counter-productive. In many places here, the 

government has imposed access restrictions for commercial vehicles based on vehicle type. 

However, these restrictions have led to an increase in the number of vehicles because 

companies split the load into smaller vehicles which are allowed in the city.14 Done right, 

government regulation can help foster more efficient deliveries. Curb Flow, discussed later in 

this report, is one example of this. 

Cities Do Not Plan for Freight Growth 

 
14 Brown, Eric. “E-commerce spurs innovation in last mile.” MIT News. 4 Sept. 2018. Accessed 10 Dec. 2019. 
 http://news.mit.edu/2018/mit-e-commerce-spurs-innovations-last-mile-logistics-0904 
 

http://news.mit.edu/2018/mit-e-commerce-spurs-innovations-last-mile-logistics-0904
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While cities are focusing on developing strategies to move people more efficiently and safely, 

they have not similarly focused on deliveries and delivery logistics, which drive the economy of 

a city.7 The Director of the Urban Freight Lab at the University of Washington, Anne Goodchild 

succinctly states the issue, “Most cities do not have a freight plan. They have a transportation 

plan, a bike master plan, a transit master plan. But freight has not been something cities have 

been planning for.”7 Considering the projected growth of worldwide urban populations paired 

with the growth in e-commerce, cities may need to step in and plan for freight growth.  

Urban Freight Delivery Innovations 

One of the biggest challenges in urban environment deliveries is the last mile of the delivery, 

which are complicated by increasing gridlock in cities. Additionally, in the city, shipments are 

“much smaller and more fragmented than in regional transport.”14 There are more trucks on 

the street making more stops, and consumer e-commerce increases the chance of delivery 

failure. Since urban characteristics vary city to city, a delivery option’s effectiveness is relative 

to a specific city. Various technologies which are in use and may eventually operate at scale are 

discussed in this section. 

Data and GPS Route Planning 

Although companies now have access to vast amounts of potentially relevant data, it is typically 

the case that a small subset of these data is the most useful. These data are transactions, 

delivery records, and customer information. By combining these data properly, a company can 

“generate a lot of insight into how demand is structured, how customers behave, and how to 

adapt delivery systems to better serve customer needs.”14 Route planners are often separate 

from the daily realities of P&D drivers, leading to mistaken assumptions. For instance, route 

planners often assume that drivers can park the P&D vehicle in front of a customer’s house, 

even when this is not possible. Movement data through GPS tracking can help to extract local 

driver knowledge. By linking movement and transactional data, route planners can determine 

where the P&D vehicle was parked and which customers were served from that stop, enabling 

the route planners to develop more sophisticated, realistic routes and stop sequences for 

delivery drivers.  
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Delivery Lockers  

Delivery lockers, which can be accessed with a key card or cell phone, centralizes the P&D 

process. These lockers are in public spaces, such as retail stores, on university campuses, and 

subway terminals. Apartment buildings and businesses also increasingly have package rooms 

with P&D lockers.  

In the future, we can envision a combination of a delivery locker and an autonomous vehicle 

that can drive itself to a specific location in a neighborhood, college campus, etc. and park for 

an allotted amount of time, creating a centralized place for people to pick up and drop off their 

packages.7 

Reserving Curb Space 

As the curbside becomes more valuable with rideshare vehicles, delivery vehicles and on-

demand restaurant deliveries, cities are working to find ways to better control and utilize the 

curbside. To reduce double-parking, a San Francisco based startup, called curbFlow, has an app 

which allows delivery drivers to reserve curb space. 

curbFlow is a mobility company that coordinates commercial pickup and drop-off activities at 

the curbside in real time15, acting as “air traffic control for the curbside.”16 The company 

launched its first market in Washington, DC on August 1, 2019.  Commercial operators 

participating include UPS, Grubhub, and DoorDash. 17 On November 18, 2019, curbFlow 

launched its second market in Columbus, Ohio.18  curbFlow provides loading zones to 

commercial and private vehicles (e.g. online food delivery) making deliveries. Drivers can check 

in on arrival using the curbFlow app or can reserve space up to 30 minutes in advance.  

 
15 DDOT, curbFlow Research Project Finds High Demand for Pickup, Dropoff Zones. District Department of 
Transportation. 13 Nov. 2019. Accessed 11 Dec. 2019. https://ddot.dc.gov/release/ddot-curbflow-research-
project-finds-high-demand-pickup-dropoff-zones. 
16 “curbFlow: The Solution.” Accessed 11 Dec. 2019. Curbflow.com. 
17 “curbFlow’s Curb Management Program in Washington, DC Results in Safer, More Productive Streets.” 13 Nov. 
2019. Accessed 11 Dec. 2019. https://www.curbflow.com/dcfindings. 
18 “Press release: City of Columbus, curbFlow Kick Off Innovative Curbside Management Program.” 18 Nov. 2019. 
Accessed 11 Dec. 2019.  

https://ddot.dc.gov/release/ddot-curbflow-research-project-finds-high-demand-pickup-dropoff-zones
https://ddot.dc.gov/release/ddot-curbflow-research-project-finds-high-demand-pickup-dropoff-zones
https://www.curbflow.com/dcfindings
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The idea is that by using curbFlow, cities can “1) drastically reduce double parking, 2) provide 

safer streets for pedestrians, bicyclists, and drivers, 3) reduce carbon emissions from operators 

circling for space, 4) maximize productivity of one of their most valuable assets: curb space.”16 

Similarly, drivers can “1) be more efficient by driving down delivery times, 2) improve driver 

morale and retention with better delivery experience, 3)prioritize safety and compliance by 

getting out of the right-of-way, 4) reduce fines and citations.”16  

DC tested the app for three months (Aug-Oct 2019) by making nine temporary delivery zones 

out of parking spaces. Researchers collected data from 6,350 commercial drivers representing 

more than 900 companies.16 The project was regarded with success and found high-demand for 

pickup and dropoff zones with a decrease in double-parking incidents and illegal U-turns by 

64%.19 The test was well received, as 85 percent of users rated it as 9 or 10 as something they 

would recommend. The temporary delivery zones were restored to parking spaces after the 

program ended.  

The idea of curbFlow is not technologically innovative, but seems to work despite, or perhaps 

because, it is not. It fosters city coordination with delivery drivers, dynamically using the curb-

space for deliveries throughout the day, instead of using the space for parking for private 

vehicles. In this way, the curb-space, a public amenity, is serving more people. Giving dedicated 

curb-space to delivery drivers not only helps those immediately involved, the delivery drivers, 

but also positively affects cyclists (with decreased double-parking, which is often in bike lanes) 

and moving traffic (double-parking often blocks a lane of traffic).  

Unmanned Deliveries (AVs and Drones)  

Autonomous vehicles (AVs) and drone deliveries will become more feasible as their respective 

technologies advance. AVs are especially relevant when delivering perishable goods. The 

growth of perishable goods deliveries, which are often expected to be delivered within the hour 

and kept hot or cold, is inhibited by the cost of such deliveries. Whereas most packages can be 

 
19 Shaver, Katherine. Study: “Allowing delivery drivers to reserve curb space reduces double parking.” The 
Washington Post. 17 Nov. 2019. Accessed 21 Nov. 2019. 
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efficiently transported by a UPS P&D vehicle with dozens of other packages, perishable goods 

cannot because of their temperature and fast fulfillment constraints.  

In Houston, Nuro, an autonomous vehicle delivery company, has been testing its fleet of 

robotically piloted vehicles for several months in 2019, delivering groceries to homes and 

restaurants.20 The vehicles’ sensors map the city as they drive around the city. Currently, two 

“operators” ride in the car and have to “remain in a state of near-constant focus for hours at a 

time,” in order to monitor the vehicles’ turns, braking, acceleration, and more.20 This is just one 

of many companies that are trying to win the race to deploy truly autonomous delivery 

vehicles.  

The Limitations of Unmanned Deliveries 

With autonomous taxis, routes can be coordinated to pick up new passengers near the drop off 

point, so that the vehicle is rarely empty. However, with autonomous delivery vehicles, the AV 

will have to go back to the distribution center empty after it delivers packages, at least under 

one of the current models.14 Perhaps delivery AVs will prove to be more efficient as smart 

locker vessels.  

In order for drones to be a contender for efficient delivery, there needs to be the proper 

infrastructure, such as a landing area very near or on houses. Additionally, coordinating 

efficient and safe routes of thousands of delivery drones would be complicated and would 

contribute to noise pollution.14 

However, combining the powers of AVs and drones could be useful. Delivery AVs could drive 

through the city and, without stopping, launch drones from the AV close to their destination. 

This would reduce the number of drones and the distance they fly, minimizing complications 

while also speeding up AVs, as the AVs would no longer have to make stops or even park.14 This 

idea would not work for larger packages, though.  

Electric Cargo Bikes 

 
20 Holley, Peter. “The future of autonomous delivery may be unfolding in an unlikely space: Suburban Houston.” 
Houston Chronicle. 13 Nov. 2019. Accessed 16 Nov. 2019. 
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Electric-assist bikes (eBikes) have been deployed by delivery companies. Their battery-powered 

electric motors afford versatility and sustainability. eBikes, combined with human power, can 

cover long distances while carrying substantial loads. eBikes’ size relative to traditional P&D 

vehicles make it so that they have less impact on bike lanes and lane blockages. eBikes at UPS 

work in harmony with a centralized container which can be brought into a city during non-peak 

hours.7  

One city that is piloting eBike fleets is Montreal. The city has created several miniature 

distribution centers, dubbed “hubs”, within the city where eBikes come to pick up and then 

deliver packages. Berlin, Germany, and Oslo, Norway, are two cities that already employ eBike 

programs.2  eBike deliveries help address the last-mile delivery problem, which has been 

exacerbated by the proliferation of same-day and next-day delivery. P&D with eBikes optimizes 

square footage for maximum efficiency2 while also being environmentally friendly.  

Alternative Fuel Vehicles 

A fully loaded, zero-emission P&D vehicle can reduce the environmental impact of inefficient 

and gas-powered P&D services. In cities, electric vehicles offer a huge potential for emission 

reduction since they are not as constrained by their range as they are in suburban areas.7 

Compounding this issue, however, is that more parcels are delivered to homes than to 

businesses. In sprawling cities, the distances vehicles will have to travel may still be great. 

In Car Delivery Services 

Volvo and other automobile manufacturers are experimenting with in-car delivery services.7 A 

smartphone app can be assigned a one-time digital key to access the customer’s trunk. This 

service could be especially convenient in garages and car parks. 

Additive Manufacturing 

3D printing enables goods to be “printed” closer to a customer’s location. With additive 

manufacturing, only the raw materials, called feedstocks, that can be used to manufacture 

many different products need to be supplied.7 This manufacturing innovation fosters greater 

flexibility and efficiency in providing certain goods in an urban area.  
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As of January 2, 2018, Amazon holds a patent for a retailing system that can take custom orders 

for 3D printed items.21 Amazon is attempting to bring similar advantages of 3D printing to 

manufacturing projects to satisfy the needs of the everyday customer. Amazon gave an 

example of a household handle breaking off, and a customer placing an order, locating a digital 

CAD model of the replacement part in an online library.21 This part would then be printed from 

one of the 3D printing sites and sent to the customer. By doing so, Amazon minimizes the 

amount of space they must use in warehouses, increasing efficiency.  

Park and Walk 

Sometimes it is more efficient for deliverers to park their truck and then use a handcart to 

deliver packages than to drive the trunk along the entirety of the road. Washington, DC’s Foggy 

Bottom neighborhood is one example where deliverers park their and simply walk the package 

deliveries.7 

UPS Depot-to-Door System  

UPS announced on November 11, 2017 that they were testing a “depot-to-door” delivery 

system in a partnership with the city of London. The dubbed “Low Impact City Logistics project” 

was aimed to reduce traffic congestion and emissions associated with urban package delivery 

by using a power-assisted delivery trailer. UPS describes how the system works:  

Packages will be loaded onto pay load boxes at the depot and delivered by a single 

trailer to a central hub located within a busy urban area. The boxes are distributed 

from the hub via power-assisted trailers. The packages are then delivered to homes 

and businesses by bicycle or on foot. The pay load boxes are moved by electric 

assisted trailers which feature patented net-neutral technology, which means the 

weight of the parcels – up to 200 kilograms - is not felt by the handler. This allows for 

increased last mile deliveries in a sustainable manner. The trial will feature bike 

trailers making deliveries in and around Camden during November and December.22  

 
21 Cawley, David. “Amazon awarded patent for innovative new on-demand 3D printing retail service.” 3ders.org. 3 
Jan. 2018. Accessed 9 Dec. 2019. https://www.3ders.org/articles/20180103-amazon-awarded-patent-for-
innovative-new-on-demand-3d-printing-retail-service.html. 
22 “Innovative ‘depot-to-door’ system reduces traffic congestion and carbon emissions.” UPS Pressroom. London. 

21 Nov. 2017. Accessed 19 Nov. 2019 

https://www.3ders.org/articles/20180103-amazon-awarded-patent-for-innovative-new-on-demand-3d-printing-retail-service.html
https://www.3ders.org/articles/20180103-amazon-awarded-patent-for-innovative-new-on-demand-3d-printing-retail-service.html
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The bike trailer used in this process is a product by the development firm Fernhay. It is a “net 

neutral” technology that prevents the rider from feeling the weight of the trailer so that 

anyone, regardless of their fitness level, will be able to make deliveries using the system. 

Furthermore, this project includes optimization algorithms through a “GPS tracker fitted within 

the trailer allowing for continuous improvement in route speed and efficiency.”22 This city 

partnership and others is an attempt by UPS to develop innovations in response to the increase 

in demand for package deliveries. 

Conclusion and the Need for Future Research  

Urban populations, urban affluence, e-commerce demand, and fast delivery expectations, are 

all projected to rise. With the current rate of e-commerce and UFT, we are already seeing 

worldwide negative effects on the environment and the inability of cities to properly handle the 

new roadway capacity pressures UFT places on them. Fast delivery expectations increase the 

inefficiencies of package deliveries, minimizing the potential positive environmental effects of 

e-commerce. While cities typically have an economic master plan, or a transportation master 

plan, they do not have a freight plan. There can be unintended negative effects of government 

regulation, but there is also the potential for a large positive impact. What is clear is that the 

current UFT delivery system cannot effectively and efficiently function as it currently stands.  

There is a vital need for local, last-mile delivery innovations, especially with the expectation of 

fast delivery paired with warehouses located outside the city. UFT delivery innovations and 

ideas are being piloted in many places. Those discussed in this report, such as delivery lockers, 

unmanned deliveries, electric cargo bikes, additive manufacturing, and curb-space 

management, all contribute to help the last-mile issue in some way. A combination of the 

innovations discussed may produce the best results. However, there still lacks a solution that 

largely solves the last-mile delivery issue. More research and pilot-programs are necessary. 

Therefore, the next section discusses mobile access hubs as an innovative solution to the 

growing need to improve efficiency of urban freight deliveries.  

 
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1511883753

076-442. 

https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1511883753076-442
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1511883753076-442
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Mobile Access Hubs for Freight Pickup and Delivery 

Problem Description and Background 

As described in the literature review, urban logistics is growing in importance for several reasons. 

World population is increasing, the percentage of people living in urban areas is increasing world-

wide, and new business models (fast fulfillment; the Amazon effect) are particularly accelerating 

the growth of urban freight pickup and delivery (P&D). Urban transportation infrastructure 

growth is not able to keep up with these demographic and business model changes, and as a 

result, urban congestion and pollution are increasing. Although building out of congestion and 

pollution has not been effective and is unlikely to be effective in the future, managing out of 

congestion and pollution has potential. The objective of this study is to investigate the 

congestion, pollution, and cost implications of a freight network design and management 

innovation: the deployment of mobile storage units, which we refer to as mobile access hubs, for 

urban P&D. This is considered with an eye toward AV and an understanding that such a system 

becomes increasingly feasible given AV and other emerging technologies   

The P&D System 

An urban P&D system network is composed of non-overlapping geographical areas, or zones, that 

contain clusters of customer locations. A single P&D courier provides P&D service for each zone. 

The courier drives a motorbike or van, uses a bicycle or handcart, and/or walks through his (or 

her) zone, delivering and picking up packages. After package delivery and pickup, the courier then 

travels back to a local hub (LH) to drop off the packages that have been picked up, load his vehicle 

with packages to deliver, and once loaded, drives back to his zone to begin anew the process of 

delivering and picking up packages.  The courier may travel back and forth between the LH and 

his zone on a (road worthy) motorbike or in a van, both with small storage capacity, necessitating 

several trips per day to and from the local hub.  

The LH is a transshipment location that provides P&D sorting and dispatch services to a 

substantial number (30 to 40) of zones in its local urban area, sends packages picked up in its 

zones to other local hubs in the city and to locations outside the city, and receives packages from 
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other local hubs in the city and other locations outside of the city that are to be delivered to the 

zones in its local area.   

We refer to the time the courier is traveling between the LH and his zone ‘stem time’ and the 

distance traveled ‘stem distance’. Stem time is costly and unproductive since no pickups or 

deliveries occur during stem time. However, courier time is expended, travel expenses are 

incurred, air pollution is generated, and another vehicle is added to possibly congested roads. 

Private sector and public sector objectives are in alignment to reduce stem times during P&D as 

much as possible.  

One solution for reducing stem times is to provide small storage units, called access hubs, that 

provide service to a small number (1 to 4) of zones. Access hubs receive packages from the LH 

that are to be delivered to the zones served by the access hub and receive packages from these 

zones to be transshipped through the LH. At most only minor sorting is done at an access hub. 

Packages are transported between access hubs and the LHs by a road worthy shuttle, a van, or 

small truck that typically has a greater carrying capacity than the vehicles used for transport by 

the couriers between the LH and the zone. A courier’s stem time is reduced and often eliminated 

if his zone is provided service by an access hub since the distance from the zone to the access 

hub is considerably shorter (sometimes zero) than the distance from the zone to the LH.  Since 

the carrying capacity of the vehicle moving packages between the access hub and the LH is larger 

than the carrying capacity of vehicles used by the couriers, total stem time and distance are 

reduced, and courier productivity and customer service level are increased.   

There are two types of access hubs, fixed and mobile. Fixed access hubs cannot be easily 

relocated whereas mobile access hubs require a relatively modest amount of time and effort for 

relocation. Examples of a fixed access hub include a storage shed, a store backroom, and a smart 

locker bank, and these may be attended or unattended. Depending on the location (e.g. public 

vs. private space), attended or unattended, and who has access (single user or multi-party user), 

various levels of security can be used to secure access to the stored packages.  
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 A mobile access hub (MAH) is a mobile storage facility that can be motorized (e.g., truck or van) 

or towed (e.g., trailer) and can be easily repositioned in an urban environment, assuming space 

availability. The figures below illustrate a UPS MAH in Munich and a TNT (recently acquired by 

FedEx) MAH in Brussels, both temporarily located in reserved parking spaces. In both cases, a 

courier picks up packages for delivery from the MAH and delivers packages picked up in his zone 

to the MAH, using a motorized tricycle. A shuttle vehicle, or the MAH itself if motorized, may be 

used to move packages between the MAH and the LH.  
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Manufacturing capacity can also be relocatable and, also true with storage capacity, it is easier 

to relocate some forms of capacity than others.  3D printers and bioreactors (any manufactured 

device or system that supports a biologically active environment) are often small enough to be 

moved with a handcart or hand jack and a van. Referring to either manufacturing or storage 

capacity that is relocatable as a module, we remark that how often modules would be relocated 

and the lead time for the relocation would in reality be situation and module dependent. For 3D 

printers, bioreactors, and smart locker modules (another form of potentially mobile storage 

capacity), relocation decisions might be made monthly or quarterly, and relocation may take a 

day or two. Location may be event driven. For example, there may be a surge of package 

shipment demand in specific zones due to a special holiday or entertainment event or in response 

to a production disruption, requiring the rapid (within hours) deployment of a van, package car, 

or straight truck.  Relocation decisions for container-sized modular production units for 

pharmaceutical intermediates might be made quarterly or annually and require several weeks of 

lead time if the module is to be moved across a national border. However, if the relocatable 

module is a smart locker or 3D printer on a truck or trailer (GeekWire, 2018; Verlinde et al., 2014), 
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then relocation decisions might be made once or more a week, even daily, and require less than 

an hour or two of lead time. 

We now evaluate the relative merits of three options for zones served by a LH, the no access hub 

option, the fixed access hub option, and the MAH option:   

• The no access hub option generates the most stem time and requires the least capital 

expenditure by not having either a fixed access hub or MAH, both of which require capital 

investment and accrue expenses. The no access hub option is reasonable to consider for 

zones close to the local hub (i.e., those having short stem times), zones where fixed 

storage facilities do not exist or are expensive, or zones where there is no available and 

reasonably priced reserved parking or loading zone for a MAH.   

• The fixed access hub option is reasonable to consider when stem times are long, demand 

for storage is significant for most of the week, fixed storage capacity is available and 

affordable, and reserved parking is unavailable or expensive.  

• The MAH option is reasonable to consider when stem times are long, demand for storage 

may be significant for only a portion of the week (e.g., demand is high on Monday and 

Tuesday mornings and otherwise modest or negligible), demand at other zones in the 

urban area is negatively correlated (e.g., there are other zones where demand peaks at 

times of the week other than Monday and Tuesday mornings and is low on Monday and 

Tuesday mornings), reserved parking is available and affordable, and fixed storage space 

is expensive or unavailable.  In general, loading zones or reserved parking is easier to 

secure than is a fixed access hub.  

The following two examples illustrate these three options.  

Example 1:  The intent of this example is to illustrate the value of an access hub (either fixed or 

mobile), relative to the no access hub option. Assume there is a single LH, a single zone Z, and 

that there is a single class of service that places no deadlines throughout the day for pickups or 

deliveries. For the no access hub option, the courier’s day begins at the LH by loading his P&D 

vehicle to full capacity with packages to deliver to customers in Z. We assume: 

• Loading takes 15 minutes. 
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• The trip from LH to Z takes 15 minutes. We assume that the vehicle transporting the 

packages is a road worthy motorbike or van, either of which is a source of air pollution. 

• Once in Z, deliveries and pickups take 1 hour. The deliveries and pickups may be 

accomplished by the vehicle transporting the packages from LH or by other, less polluting 

means, such as walking with a handcart.  

• The return trip from Z to LH takes 15 minutes. 

• Unloading the packages and minor sorting once the courier has arrived at LH takes 15 

minutes.  

Thus, a cycle takes 2 hours. During an 8-hour day, 4 cycles are possible, with 2 hours of stem time. 

We assume that air pollution generated during stem time is high, relative to air pollution 

generated during P&D in Z, and the P&D vehicle contributes to congestion during stem time but 

not during P&D in Z. 

Assume an access hub exists (mobile or fixed), packages are loaded at LH and transported to Z 

prior to the beginning of the courier’s workday, either by the MAH or by a shuttle to the fixed 

access hub. We assume this transport provides enough packages for a full day of courier P&D. At 

the end of the courier’s workday, the packages picked up during the day in Z are transported back 

to LH. Thus, only one round-trip between LH and Z is required by either the MAH or by the shuttle 

transporting packages for a fixed access hub. A courier’s cycle now takes 1.5 hours, and 5 and 

1/3rd cycles are possible with no hours of stem time for the courier. Hence, the courier’s 

productivity has increased 33% and the total amount of air pollution generated by the courier is 

less than the total amount of air pollution generated by the courier when no access hub exists. 

The MAH or the shuttle supplying the fixed access hub generates 30 minutes of air pollution at a 

relatively high rate. However, total air pollution generated with an access hub is likely to be 

considerably less than the total air pollution generated without an access hub. Further, there is 

a 75% reduction in vehicle stem time, reducing the traffic congestion contribution, relative to the 

case where no access hub exists.  

Example 2:  The intent of this example is to illustrate the potential value of a MAH, compared to 

a fixed access hub. We continue Example 1 having a single LH but providing service to two zones, 
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Z1 and Z2, on different days of the week. Assume P&D demand at Z1 is high on Monday and 

Tuesday and negligible the rest of the week and P&D demand at Z2 is negligible on Monday and 

Tuesday and high for the rest of the week. There are two options: (1) place a fixed access hub in 

both zones for a total of two fixed access hubs, (2) deploy a single MAH to Z1 Monday and 

Tuesday and to Z2 the rest of the week. Although a MAH may cost more per unit volume of 

storage space than a fixed access hub, the cost per unit volume of storage space of a single MAH 

is unlikely to be twice that of a fixed access hub. Thus, we get the benefit of access hubs described 

in Example 1 at less cost and more flexibility to the company by deploying a single MAH, rather 

than two fixed access hubs.  

The above examples are highly stylized for illustrative purposes and to some extent represent 

best case scenarios. In reality, a company would offer multiple classes of service with deadlines 

for delivery in the zones (e.g., expedited packages guaranteed to be delivered the next day before 

9:30am) or delivery to the LH for the departure of straight trucks or vans to other local hubs and 

linehaul vehicles outside of the urban area.  The transport of packages between the LH and the 

zones would have to take into consideration delivery deadlines and departures from the LH to 

other destinations. These considerations are highly likely to increase the number of shuttle trips 

between the zones and the LH. The examples do not take into consideration vehicle capacity 

limitations and freight handling risk (the more a package holding a fragile object is handled, the 

higher the likelihood of (i) breakage, (ii) the need to file an insurance claim, and (iii) a disgruntled 

customer), which motivates a company to minimize the number of times a package is handled.  

Also, negative demand correlations are highly unlikely to be as clear cut as assumed in the second 

example. On the other hand, a shuttle probably would be deployed to make ‘milk runs’ involving 

multiple stops at multiple access hubs, which could introduce additional operational efficiencies 

with ancillary reductions in congestion and pollution.  

In summary, determining how many access hubs to have, which zones should have them, which 

of these should be serviced by mobile or fixed access hubs is a complicated dynamic network 

design task. How to deploy the MAHs throughout the day and week, and how many of the MAHs 

should be motorized and how many should be trailers are highly dependent on zone P&D real-
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time P&D demand data and their correlations, reserved parking and fixed access hub availability 

and cost, and a myriad of other costs.  Further, managing such a network is highly data-driven 

and time sensitive, and hence operating the network is a complex management task. Such freight 

distribution networks are Next Generation networks. These networks are data-driven and 

controlled in real-time, and the level of their performance improvement is a function of the 

quality of the real-time data and the analytics that convert these data into real-time network 

management decisions. Adoption by industry is driven by the need to remain competitive. The 

examples have indicated the potential for impact of such networks on firm productivity and on 

urban traffic congestion and air pollution and hence indicate how the public sector can 

incentivize socially positive corporate behavior by helping to accelerate the development and 

adoption of such networks.   

It is also clear that while replacing today’s current P&D system with AVs may reduce labor costs 

it has a high potential to increase congestion, environmental impacts, and other system 

inefficiencies. Emerging technologies must not be considered in isolation, or simply as 

replacements of activities currently accomplished through non-AV means. To avoid the many 

potential negative impacts feared by the introduction of AV it is necessary to reimage entire 

systems, such as P&D.  

Quantitative Analysis 

In this section, we present an approach for analyzing the impact of affordable, reserved parking 

(or loading zones) availability on congestion and pollution reduction. We begin by making three 

comments. First, the more reserved parking is available and affordable, the more likely MAHs will 

be used. Second, as we assumed in the examples, the cost per unit of time for a unit of area 

storage space is likely to be lower for a fixed access hub than for a MAH. Hence, for zones that 

are generally busy, a fixed access hub might be the best option, rather than any alternative. Third, 

as can be inferred from the discussion in Example 2, negative correlations in the demand for P&D 

for zones help to identify where a single MAH can provide service to multiple zones by intelligent, 

demand-driven repositioning. The more zones having negatively correlated demand, the fewer 

MAHs are needed. However, do such negative correlations typically exist in an urban area? If so, 
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then as these negative correlations increase, the likelihood increases that mobile hubs could 

support efficient package P&D and hence have positive impact on congestion and pollution. To 

the best of our knowledge, data are limited in this regard. However, we are aware of an 

unpublished package demand correlation study where approximately 25% of the zones in a large 

urban area have negatively correlated demand, supporting the claim that the number of MAHs 

needed to provide service to zones in an urban area may be considerably smaller than the 

number of zones, especially if a MAH can provide service to multiple (presumably adjacent) 

zones.   

The first comment raises the question: what level of public sector intervention would elicit a 

private sector response that would have a material impact on reducing congestion and pollution? 

This question in turn raises two questions: 

1. For an urban area, what is the potential for congestion and pollution reduction using 

mobile and/or fixed access hubs, where the no access hub option is the baseline, and how 

can this reduction be affected by public sector policy interventions? 

2. How much does freight delivery contribute to urban pollution and congestion and how 

much of this is due to P&D? 

The second question has been addressed in the literature search, which indicates P&D is a major 

contributor to urban pollution and congestion. With regard to the first question, we thus far have 

argued that MAHs can help to reduce urban congestion and pollution and have postulated that 

the public sector can accelerate the development and adoption of MAHs by providing or 

incentivizing affordable reserved parking space for them and have noted in the literature review 

the significant impact of curbFlow in a three month study in San Francisco.  Our argument thus 

far has been qualitative. We now present a first step in quantitatively determining the impact of 

MAHs.  

Parking for private automobiles can be either short term (e.g., at commuter parking lots that do 

not permit overnight parking) or long term (e.g., long term airport parking). At this point, it is not 

clear if reserved parking for MAHs will be short term, long term, or a mixture of both. However, 

the analytic and computational implications are different and significant if reserved parking is 
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short term or long term. If the MAHs are motorized, then they may return to the local hub in the 

evening to unload and remain at the LH overnight and be reloaded with packages that are to be 

delivered to their zones for next day’s P&D operations.   If this is the case, then it is sufficient to 

consider a model of MAH deployment that only involves a time horizon of a single day. Such a 

model would not have to consider the strategic deployment of the MAH for the next day, later in 

the week, or over the weekend and hence would require relatively less complex analysis. 

If parking for periods longer than a day is permitted, and this may be preferred for MAHs that are 

trailers like the UPS and TNT MAHs pictured above, then we would want the model to take into 

consideration multi-day strategic deployment.  We now consider the long-term parking problem 

and will treat the short-term parking problem as a special case.  

Model Formulation  

Assume there are 𝒁 zones that a MAH may be deployed to for at least one day during a 7-day 

week. We assume that P&D demand for the zones is periodic with periodicity 7; e.g., the demand 

for Monday is the demand for all Mondays. Assume 𝑎(𝑧, 𝑡)  =  1 ( =  0) if a MAH is deployed 

(not deployed) at zone z on day 𝑡. Throughout day 𝑡, the positioning of the MAHs is described by 

{𝑎(𝑧, 𝑡)}, which we consider the state of the P&D distribution system. We assume decisions for 

next day MAH deployment is made with full knowledge of how the MAHs are currently deployed. 

Additionally, we assume redeployment during the day is not feasible; a more granular (e.g., hour 

to hour or morning and afternoon) model would allow intra-day redeployment. 

In the evening of day 𝑡, the following events occur. If the MAH serves as its own shuttle, the MAH 

returns to the LH to deposit packages picked up through day 𝑡 that are destined for other LHs 

within the urban area or destinations outside of the urban area. Throughout the night, packages 

are loaded into the MAH that are to be delivered to the zone that it will service on day 𝑡 + 1. We 

remark that the MAH may be assigned to a zone on day 𝑡 + 1 that is different from the zone it 

was assigned to on day 𝑡, as illustrated in Example 2. Then early on day 𝑡 + 1, the MAH travels to 

its assigned zone to support P&D services.  
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If the MAH is a trailer (i.e., cannot relocate by itself) and it is to service a zone on day 𝑡 + 1 

different from its assigned zone on day 𝑡, then the MAH must be repositioned, which we assume 

accrues a repositioning cost 𝐶 .  For notational simplicity, we initially assume that the 

repositioning cost is independent of the zones on days 𝑡 and 𝑡 + 1. An actual application may 

require a more detailed repositioning model and analysis of repositioning cost.  

Let 𝑐1(𝑧, 𝑡) (𝑐0(𝑧, 𝑡)) and be the expected P&D cost to be accrued during day 𝑡, given zone z has 

(does not have) a MAH that provides it service.  The precise determination of 𝑐1(𝑧, 𝑡) and 𝑐0(𝑧, 𝑡) 

is non-trivial and would be application specific. Then, the expected total P&D cost accrued during 

day 𝑡, given the state of the P&D system on day 𝑡 − 1 is {𝑎(𝑧, 𝑡 − 1)} and the state on day 𝑡 is 

{𝑎(𝑧, 𝑡)}, is 

 

∑  [𝑎(𝑧, 𝑡)𝑐1(𝑧, 𝑡)  + (1 –  𝑎(𝑧, 𝑡))𝑐0(𝑧, 𝑡)  +  𝐶|𝑎(𝑧, 𝑡 − 1) –  𝑎(𝑧, 𝑡)|/2]

𝑧

. 

 

We remark that it is likely that 𝑐1(𝑧, 𝑡) ≤  𝑐0(𝑧, 𝑡)  for zones far from the LH and 𝑐1(𝑧, 𝑡) ≥

 𝑐0(𝑧, 𝑡) for zones close to the LH, and we will assume 𝒁 is less than or equal to the number of 

zones that satisfy 𝑐1(𝑧, 𝑡) ≤  𝑐0(𝑧, 𝑡) for any 𝑡.  The optimization problem then becomes 

 

min ∑ 𝛽𝑡 ∑[𝑎(𝑧, 𝑡)𝑐1(𝑧, 𝑡)  + (1 –  𝑎(𝑧, 𝑡))𝑐0(𝑧, 𝑡)  +  𝐶|𝑎(𝑧, 𝑡 − 1) –  𝑎(𝑧, 𝑡)|/2]

𝑧𝑡

 

 

subject to 

 

𝑎(𝑧, 𝑡) ∈  {0, 1} for all 𝑧 and 𝑡 
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∑ 𝑎(𝑧, 𝑡)𝑧 =  𝒁 for all 𝑡 

 

for discount factor 𝛽 such that 0 ≤ 𝛽 <  1.  

This optimization problem is an infinite horizon assignment problem (a form of combinatorial 

optimization problem) that can be analyzed as a periodic dynamic program having the optimality 

equations 𝑣 =  𝐻𝑡𝑣, 𝑡 =  1, … , 7, where: 

 

[𝐻𝑡𝑣](𝑎)  =  min
𝑎′

 {[𝑎’(𝑧)𝑐1(𝑧, 𝑡)  +  (1 –  𝑎’(𝑧))𝑐0(𝑧, 𝑡)  +  𝐶|𝑎(𝑧) –  𝑎’(𝑧)|/2]  + 𝛽𝑣(𝑎’, 𝑡

+ 1)}, 

and when 𝑡 =  7, 𝑡 + 1 =  1 (modulo 7). Straightforward extensions of results in (Puterman, 

1994) guarantee that there exists a unique set of real-valued functions (𝑣𝑡
∗, 𝑡 =  1, … , 7) such 

that 𝑣𝑡
∗  =  𝐻𝑡(𝑣𝑡

∗ + 1), 𝑡 =  1, … , 6, 𝑣7
∗  =  𝐻7(𝑣1

∗) and that these fixed points are the minimum 

expected total discounted cost over the infinite horizon of starting at day 𝑡.  Also, the policy that 

causes the minimum to be attained is an optimal policy, where a policy is a mapping from the 

state at day 𝑡 − 1 to the state at day 𝑡 (modulo 7) and these 7 policies are periodic (e.g., a policy 

that is optimal for Monday is optimal for all Mondays).  It is also true that for any bounded 

function 𝑣0,7  and sequence of functions {𝑣𝑡,𝑛},  where 𝑣7,𝑛+1  =  𝐻1(𝑣1,𝑛), 𝑣𝑡−1,𝑛  =

 𝐻𝑡(𝑣𝑡,𝑛), 𝑡 =  2, … , 7, then in the limit at n goes to infinity, ||𝑣𝑡
∗  – 𝑣𝑛,𝑡|| goes to zero, where || ⋅

|| is the sup norm.   

We remark that given v, the single period optimization problem [𝐻𝑡𝑣](𝑎), a single successive 

approximations iteration, is an assignment problem (an integer program with binary variables) 

and can be solved with standard optimization software.  We remark that the number of 

operations per successive approximations step is 2 to the power 𝒁2. 

If overnight parking is prohibited and/or all of the MAHs are motorized and are required to return 

to the LH every evening, then repositioning cost is automatically accrued and there is no need to 

take into consideration the cost of repositioning the MAHs when making the daily repositioning 
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decision.  Under these circumstances, the repositioning cost can be subsumed into 𝑐1(𝑧, 𝑡) and 

𝑐0(𝑧, 𝑡) and we can set 𝐶 =  0.  Then the above optimization problem becomes a much simpler 

single period assignment problem, identical in complexity and hence computational effort to one 

step of successive approximations (with 𝑣 =  0). This problem can be solved with the following 

simple (and optimal) heuristic: on day t, send MAHs to the zones having the 𝒁 largest values of 

𝑐0(𝑧, 𝑡) – 𝑐1(𝑧, 𝑡) , where we have assumed above that this difference is always positive 

(otherwise, park some of the MAHs and/or reduce 𝒁).   

MAHs Serving Multiple Zones 

Thus far, we have assumed that a zone is served by either zero or one MAH, an assumption that 

we will continue to make. Also, thus far, we have assumed that a MAH serves only one zone per 

day. Recalling Example 1 and assuming there is a MAH serving two geographically adjacent zones, 

relative to the no MAH case for both zones, the same increase of benefits are accrued for both 

zones as outlined in Example 1 at half the capital costs of a MAH.  Thus, congestion and pollution 

reduction per zone remains the same and capital expenditures are reduced by 50%. If the MAH 

serves two zones that are geographically separated, presumably by a short distance, then at least 

one of the two couriers would have a modest amount of stem time between the MAH and his 

zone, modestly increasing his contribution to congestion and pollution.  This discussion illustrates 

the value of having access hubs serve multiple (2-4) zones and having the zones served to be as 

geographically co-located as possible.  

Related Unpublished Studies 

We are aware of two yet unpublished studies on topics related to storage capacity mobility that 

indicate the potential of relocatable (storage and production) capacity. The first study is part of 

an on-going 2-year simulation study of freight flows in a large urban area (Shenzhen, PRC) for a 

large package express company. An overview description of the study is presented in (Faugère, 

et al., 2018). Part of this study evaluates the value of access hubs (both fixed and mobile), takes 

into consideration multiple levels of service, but assumes no access to long term (overnight) 

reserved parking. Preliminary yet unpublished results indicate that MAHs serving one to two 

zones can reduce the stem distance traveled by 11% to 60%. We remark that a correlation 



   Evaluation of Advanced Vehicle and Communication 
Technologies through Traffic Microsimulation 

   

130 

 

analysis of demand at the zone level in the urban area, also as yet unpublished, shows that there 

are substantial (25%) negative correlations among pairs of zones, indicating that opportunities 

exist for a single MAH to provide service to multiple zones over the course of a week, which 

would reduce the capital requirements for (and hence barriers to) implementing MAHs.  

However, it is unknown at this point if this percentage of negatively correlated pairs of zones is 

typical of domestic major metropolitan areas. 

The second study (Malladi, et al, 2019) is concerned with relocatable manufacturing capacity and 

shows that production capacity mobility plus transshipment in a 5-location manufacturing 

network can improve systems performance by as much as 41% relative to the case where 

manufacturing capacity cannot be relocated, and transshipment is not permitted.  Further, this 

study shows that production capacity mobility, assuming transshipment is not permitted, can 

yield as much as 10% more savings compared to when transshipment is permitted but production 

capacity is immobile. Both studies indicate the significant potential value of mobile capacity, a 

design feature that we anticipate will be key facet of many future supply chain designs. 

Faugère, L., Malladi, S., White, C., Montreuil, B., Smart Locker Based Access Hub Network 

Capacity Deployment in Hyperconnected Parcel Logistics. Proceedings of 5th International 

Physical Internet Conference, 2018 

Malladi, S., Erera, A., White, C., “A Dynamic Mobile Production Capacity and Inventory Control 

Problem”, IISE Transactions, accepted for publication, November 2019 A Dynamic Mobile 

Production Capacity and Inventory Control Problem 

Conclusions and Future Research 

The curbFlow study in San Francisco, our simple analysis of stylized situations in Examples 1 and 

2, and the two unpublished studies indicate that use of MAH’s, more generally access hubs, in 

urban areas is a P&D network design innovation with significant potential for reducing 

congestion, pollution, and private sector costs. It is clear that such approaches must be 

considered as the transportation system evolves to AV and other emerging technologies. 

https://www.tandfonline.com/doi/full/10.1080/24725854.2019.1693709
https://www.tandfonline.com/doi/full/10.1080/24725854.2019.1693709
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 Further, we have taken a first step in the development of an optimization problem that is 

tractable under many realistic circumstances (especially for the case where MAH overnight 

parking is not permitted) and can be useful in supporting an in-depth study of the impact of 

MAHs.  A barrier to the private sector adoption of this cost saving network design innovation 

would be the lack of affordable access to reserved parking for the MAHs, a barrier that the public 

sector could play a role in removing or reducing. A future research topic would be an in-depth 

study of what role(s) the public sector might play to accelerate the use of MAHs in urban areas 

for congestion and pollution reduction.   
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